IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i3p740-749.html
   My bibliography  Save this article

Research on the relationship between the multifractality and long memory of realized volatility in the SSECI

Author

Listed:
  • Jia, Zhanliang
  • Cui, Meilan
  • Li, Handong

Abstract

We examine the multifractal properties of the realized volatility (RV) and realized bipower variation (RBV) series in the Shanghai Stock Exchange Composite Index (SSECI) by using the multifractal detrended fluctuation analysis (MF-DFA) method. We find that there exist distinct multifractal characteristics in the volatility series. The contributions of two different types of source of multifractality, namely, fat-tailed probability distributions and nonlinear temporal correlations, are studied. By using the unit root test, we also find the strength of the multifractality of the volatility time series is insensitive to the sampling frequency but that the long memory of these series is sensitive.

Suggested Citation

  • Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:740-749
    DOI: 10.1016/j.physa.2011.08.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111007060
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.08.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    3. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    4. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    5. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    6. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    7. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
    8. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    9. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    10. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    12. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    13. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    14. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    15. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    16. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    17. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    18. Li, Handong & Cao, Shi-Nan & Wang, Yan, 2010. "The properties and mechanism of long-term memory in nonparametric volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3254-3259.
    19. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    20. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    21. Costa, Rogério L. & Vasconcelos, G.L., 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 231-248.
    22. R. L. Costa & G. L. Vasconcelos, 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Papers cond-mat/0302342, arXiv.org.
    23. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    24. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-376, July.
    25. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    26. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    2. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    3. Ma, Feng & Wei, Yu & Huang, Dengshi & Zhao, Lin, 2013. "Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5356-5368.
    4. Cao, Guangxi & Xu, Wei, 2016. "Multifractal features of EUA and CER futures markets by using multifractal detrended fluctuation analysis based on empirical model decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 212-222.
    5. Jujie Wang & Yinan Liao & Zhenzhen Zhuang & Dongming Gao, 2021. "An Optimal Weighted Combined Model Coupled with Feature Reconstruction and Deep Learning for Multivariate Stock Index Forecasting," Mathematics, MDPI, vol. 9(21), pages 1-20, October.
    6. He, Xiaoli & Wang, Hongwu & Du, Ziping, 2014. "The complexity and fractal structures of CSI300 before and after the introduction of CSI300IF," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 76-85.
    7. Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.
    8. Saâdaoui, Foued, 2018. "Testing for multifractality of Islamic stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 263-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    2. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    3. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    4. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    5. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    6. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    7. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    8. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    9. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    10. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    12. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    13. Pavón-Domínguez, P. & Serrano, S. & Jiménez-Hornero, F.J. & Jiménez-Hornero, J.E. & Gutiérrez de Ravé, E. & Ariza-Villaverde, A.B., 2013. "Multifractal detrended fluctuation analysis of sheep livestock prices in origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4466-4476.
    14. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    15. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    16. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    17. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    18. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
    19. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    20. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:740-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.