IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v1y2009i2p179-202.html
   My bibliography  Save this article

Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility

Author

Listed:
  • Jacek Osiewalski

    (Department of Econometrics and Operations Research, Cracow University of Economics and Andrzej Frycz Modrzewski Cracow Academy)

  • Anna Pajor

    (Department of Econometrics and Operations Research, Cracow University of Economics)

Abstract

The aim of this paper is to examine the empirical usefulness of two new MSF - Scalar BEKK(1,1) models of n-variate volatility. These models formally belong to the MSV class, but in fact are some hybrids of the simplest MGARCH and MSV specifications. Such hybrid structures have been proposed as feasible (yet non-trivial) tools for analyzing highly dimensional financial data (large n). This research shows Bayesian model comparison for two data sets with n = 2, since in bivariate cases we can obtain Bayes factors against many (even unparsimonious) MGARCH and MSV specifications. Also, for bivariate data, approximate posterior results (based on preliminary estimates of nuisance matrix parameters) are compared to the exact ones in both MSF-SBEKK models. Finally, approximate results are obtained for a large set of returns on equities (n = 34).

Suggested Citation

  • Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(2), pages 179-202, November.
  • Handle: RePEc:psc:journl:v:1:y:2009:i:2:p:179-202
    as

    Download full text from publisher

    File URL: http://www.cejeme.com/publishedarticles/2009-55-15-633912153038593750-6984.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    2. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    3. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    4. Jeff Fleming & Chris Kirby, 2003. "A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 365-419.
    5. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    6. Osiewalski, Jacek & Pipien, Mateusz, 2004. "Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland," Journal of Econometrics, Elsevier, vol. 123(2), pages 371-391, December.
    7. Anna Pajor, 2005. "Bayesian Analysis of Stochastic Volatility Model and Portfolio Allocation," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 14, pages 229-249, University of Lodz.
    8. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    2. Silvennoinen Annastiina & Teräsvirta Timo, 2016. "Testing constancy of unconditional variance in volatility models by misspecification and specification tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 347-364, September.
    3. Jacek Osiewalski & Krzysztof Osiewalski, 2016. "Hybrid MSV-MGARCH Models – General Remarks and the GMSF-SBEKK Specification," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(4), pages 241-271, December.
    4. Pajor Anna & Wróblewska Justyna, 2017. "VEC-MSF models in Bayesian analysis of short- and long-run relationships," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    5. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    6. Darolles, Serge & Francq, Christian & Laurent, Sébastien, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Journal of Econometrics, Elsevier, vol. 204(2), pages 223-247.
    7. Jacek Osiewalski & Anna Pajor, 2010. "Bayesian Value-at-Risk for a Portfolio: Multi- and Univariate Approaches Using MSF-SBEKK Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(4), pages 253-277, September.
    8. Krzysztof Osiewalski & Jacek Osiewalski, 2013. "A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(1), pages 65-83, March.
    9. Marek A. Dąbrowski & Łukasz Kwiatkowski & Justyna Wróblewska, 2020. "Sources of Real Exchange Rate Variability in Central and Eastern European Countries: Evidence from Structural Bayesian MSH-VAR Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(4), pages 369-412, December.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    11. Mateusz Pipień, 2013. "Orthogonal Transformation of Coordinates in Copula M-GARCH Models – Bayesian analysis for WIG20 spot and futures returns," NBP Working Papers 151, Narodowy Bank Polski.
    12. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    13. Justyna Wróblewska & Anna Pajor, 2019. "One-period joint forecasts of Polish inflation, unemployment and interest rate using Bayesian VEC-MSF models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 23-45, March.
    14. Anna Pajor, 2011. "Bayesian Optimal Portfolio Selection in the MSF-SBEKK Model," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 41-54.
    15. Justyna Mokrzycka, 2019. "Bayesian comparison of bivariate Copula-GARCH and MGARCH models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 47-71, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    3. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    4. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    6. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    7. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    8. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    9. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    10. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017. "Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
    11. Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
    12. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    13. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    14. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, January.
    15. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    16. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    17. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    19. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    20. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.

    More about this item

    Keywords

    Bayesian econometrics; Gibbs sampling; time-varying volatility; multivariate GARCH processes; multivariate SV processes;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:1:y:2009:i:2:p:179-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.