IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2011-11.html
   My bibliography  Save this paper

Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models

Author

Listed:
  • Jason Ng
  • Catherine S. Forbes
  • Gael M. Martin
  • Brendan P.M. McCabe

Abstract

The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the conditional distribution of the non-Gaussian variable is estimated non-parametrically. The filtering and prediction distributions are estimated via a computationally efficient algorithm that exploits the functional relationship between the observed variable, the state variable and a measurement error with an invariant distribution. Simulation experiments are used to document the accuracy of the non-parametric method relative to both correctly and incorrectly specified parametric alternatives. In an empirical illustration, the method is used to produce sequential estimates of the forecast distribution of realized volatility on the S&P500 stock index during the recent financial crisis. A resampling technique for measuring sampling variation in the estimated forecast distributions is also demonstrated.

Suggested Citation

  • Jason Ng & Catherine S. Forbes & Gael M. Martin & Brendan P.M. McCabe, 2011. "Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models," Monash Econometrics and Business Statistics Working Papers 11/11, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2011-11
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp11-11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    2. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    3. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    4. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    5. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    6. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
    7. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    8. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393.
    9. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    10. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    11. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    12. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    13. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    14. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    17. Brendan P. M. McCabe & Gael M. Martin & David Harris, 2011. "Efficient probabilistic forecasts for counts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 253-272, March.
    18. Monteiro, André A., 2010. "A semiparametric state space model," DES - Working Papers. Statistics and Econometrics. WS ws103418, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    20. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    21. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    22. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    23. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    24. Joyce E. Berg & John Geweke & Thomas A. Rietz, 2010. "Memoirs of an indifferent trader: Estimating forecast distributions from prediction markets," Quantitative Economics, Econometric Society, vol. 1(1), pages 163-186, July.
    25. Genshiro Kitagawa, 1994. "The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 605-623, December.
    26. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
    28. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    29. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    30. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    31. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    32. Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
    33. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
    34. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    35. Durham, Garland B., 2007. "SV mixture models with application to S&P 500 index returns," Journal of Financial Economics, Elsevier, vol. 85(3), pages 822-856, September.
    36. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    37. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    38. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    39. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    40. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    41. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    42. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    43. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    44. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    45. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
    46. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
    47. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, June.
    48. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
    2. Shalini Sharma & Víctor Elvira & Emilie Chouzenoux & Angshul Majumdar, 2021. "Recurrent Dictionary Learning for State-Space Models with an Application in Stock Forecasting," Post-Print hal-03184841, HAL.
    3. Patrick Leung & Catherine S. Forbes & Gael M. Martin & Brendan McCabe, 2016. "Data-driven particle Filters for particle Markov Chain Monte Carlo," Monash Econometrics and Business Statistics Working Papers 17/16, Monash University, Department of Econometrics and Business Statistics.
    4. Gael M. Martin & Brendan P.M. McCabe & Worapree Maneesoonthorn & Christian P. Robert, 2014. "Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 20/14, Monash University, Department of Econometrics and Business Statistics.
    5. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    6. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    7. Pauwels, Laurent, 2019. "Predicting China’s Monetary Policy with Forecast Combinations," Working Papers BAWP-2019-07, University of Sydney Business School, Discipline of Business Analytics.
    8. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    5. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    6. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    7. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    12. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    14. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
    15. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    16. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    17. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    20. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.

    More about this item

    Keywords

    Probabilistic Forecasting; Non-Gaussian Time Series; Grid-based Filtering; Penalized Likelihood; Subsampling; Realized Volatility.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.