IDEAS home Printed from https://ideas.repec.org/p/brd/wpaper/120.html
   My bibliography  Save this paper

High-frequency Cash Flow Dynamics

Author

Listed:
  • Davide Pettenuzzo

    (Brandeis University)

  • Riccardo Sabbatucci

    (Stockholm School of Economics)

  • Allan Timmermann

    (University of California San Diego)

Abstract

We develop a new approach to modeling high-frequency dynamics in cash flows extracted from daily firm-level dividend announcements. Daily cash flow news follows a noisy process that is dominated by outliers so our approach decomposes this series into a persistent component, large but infrequent jumps, and temporary shocks with time-varying volatility. Empirically, we find that the persistent cash flow growth component is a better predictor of future dividend growth than alternative predictors from the literature. We also find strong evidence that news about the persistent cash flow component has a significantly positive effect on same-day stock market returns, while news about the temporary cash flow components has little effect on returns. Negative jumps in the cash flow process and higher cash flow volatility are associated with elevated stock market volatility and a higher probability of observing a jump in daily stock returns. These findings suggest that high-frequency news about the underlying cash flow growth process is an important driver not only of average stock market performance but also of the volatility and jump probability of stock prices.

Suggested Citation

  • Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2018. "High-frequency Cash Flow Dynamics," Working Papers 120, Brandeis University, Department of Economics and International Business School.
  • Handle: RePEc:brd:wpaper:120
    as

    Download full text from publisher

    File URL: http://www.brandeis.edu/economics/RePEc/brd/doc/Brandeis_WP120.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Jules van Binsbergen & Michael Brandt & Ralph Koijen, 2012. "On the Timing and Pricing of Dividends," American Economic Review, American Economic Association, vol. 102(4), pages 1596-1618, June.
    3. Ralph S.J. Koijen & Stijn Van Nieuwerburgh, 2011. "Predictability of Returns and Cash Flows," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 467-491, December.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Terence Lim, 2001. "Rationality and Analysts' Forecast Bias," Journal of Finance, American Finance Association, vol. 56(1), pages 369-385, February.
    6. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    7. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    8. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    9. Becker, Bo & Ivashina, Victoria, 2014. "Cyclicality of credit supply: Firm level evidence," Journal of Monetary Economics, Elsevier, vol. 62(C), pages 76-93.
    10. Cochrane, John H, 1992. "Explaining the Variance of Price-Dividend Ratios," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 243-280.
    11. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    12. Lettau, Martin & Ludvigson, Sydney C., 2005. "Expected returns and expected dividend growth," Journal of Financial Economics, Elsevier, vol. 76(3), pages 583-626, June.
    13. John H. Boyd & Jian Hu & Ravi Jagannathan, 2005. "The Stock Market's Reaction to Unemployment News: Why Bad News Is Usually Good for Stocks," Journal of Finance, American Finance Association, vol. 60(2), pages 649-672, April.
    14. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    15. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    16. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    17. Andrew J. Patton & Michela Verardo, 2012. "Does Beta Move with News? Firm-Specific Information Flows and Learning about Profitability," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2789-2839.
    18. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    19. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    20. Jeffrey T. Doyle & Russell J. Lundholm & Mark T. Soliman, 2006. "The Extreme Future Stock Returns Following I/B/E/S Earnings Surprises," Journal of Accounting Research, Wiley Blackwell, vol. 44(5), pages 849-887, December.
    21. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2007. "Real-time price discovery in global stock, bond and foreign exchange markets," Journal of International Economics, Elsevier, vol. 73(2), pages 251-277, November.
    22. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    23. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    24. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    25. Eisfeldt, Andrea L. & Muir, Tyler, 2016. "Aggregate external financing and savings waves," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 116-133.
    26. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    27. Grace Xing Hu & Jun Pan & Jiang Wang, 2013. "Noise as Information for Illiquidity," Journal of Finance, American Finance Association, vol. 68(6), pages 2341-2382, December.
    28. Maio, Paulo & Santa-Clara, Pedro, 2015. "Dividend Yields, Dividend Growth, and Return Predictability in the Cross Section of Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(1-2), pages 33-60, April.
    29. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    30. Harrison Hong & Jeffrey D. Kubik, 2003. "Analyzing the Analysts: Career Concerns and Biased Earnings Forecasts," Journal of Finance, American Finance Association, vol. 58(1), pages 313-351, February.
    31. Pavel Savor & Mungo Wilson, 2016. "Earnings Announcements and Systematic Risk," Journal of Finance, American Finance Association, vol. 71(1), pages 83-138, February.
    32. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    33. Liew, Jimmy & Vassalou, Maria, 2000. "Can book-to-market, size and momentum be risk factors that predict economic growth?," Journal of Financial Economics, Elsevier, vol. 57(2), pages 221-245, August.
    34. Joshua C. C. Chan & Angelia L. Grant, 2016. "On the Observed-Data Deviance Information Criterion for Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 772-802.
    35. McQueen, Grant & Roley, V Vance, 1993. "Stock Prices, News, and Business Conditions," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 683-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2020. "Cash Flow News and Stock Price Dynamics," Journal of Finance, American Finance Association, vol. 75(4), pages 2221-2270, August.
    2. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    3. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
    4. Bollerslev, Tim & Xu, Lai & Zhou, Hao, 2015. "Stock return and cash flow predictability: The role of volatility risk," Journal of Econometrics, Elsevier, vol. 187(2), pages 458-471.
    5. Lan, Chunhua & Doan, Bao, 2022. "Stock price movements: Evidence from global equity markets," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 123-143.
    6. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    7. Ilaria Piatti & Fabio Trojani, 2020. "Dividend Growth Predictability and the Price–Dividend Ratio," Management Science, INFORMS, vol. 66(1), pages 130-158, January.
    8. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    9. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    10. Chen, Sichong, 2012. "The predictability of aggregate Japanese stock returns: Implications of dividend yield," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 284-304.
    11. Lyle, Matthew R. & Wang, Charles C.Y., 2015. "The cross section of expected holding period returns and their dynamics: A present value approach," Journal of Financial Economics, Elsevier, vol. 116(3), pages 505-525.
    12. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    13. Golez, Benjamin & Koudijs, Peter, 2018. "Four centuries of return predictability," Journal of Financial Economics, Elsevier, vol. 127(2), pages 248-263.
    14. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    15. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    16. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model," MPRA Paper 58554, University Library of Munich, Germany.
    17. Vassilis Polimenis & Ioannis Neokosmidis, 2019. "Non-stationary dividend-price ratios," Journal of Asset Management, Palgrave Macmillan, vol. 20(7), pages 552-567, December.
    18. Mohsen Jafarian & Fauzias Mat Nor & Izani Ibrahim, 2018. "The Relative Importance of Cash Flow News and Discount Rate News at Driving Stock Price Change," Capital Markets Review, Malaysian Finance Association, vol. 26(1), pages 56-72.
    19. Gardner, Ben & Scotti, Chiara & Vega, Clara, 2022. "Words speak as loudly as actions: Central bank communication and the response of equity prices to macroeconomic announcements," Journal of Econometrics, Elsevier, vol. 231(2), pages 387-409.
    20. Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.

    More about this item

    Keywords

    High-frequency cash flow news; predictability of dividend growth; jump risk; dynamics in stock returns; Bayesian modeling;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:brd:wpaper:120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Luna (email available below). General contact details of provider: https://edirc.repec.org/data/gsbraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.