Forecasting realized volatility with changing average levels
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2014.09.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christian T. Brownlees & Giampiero M. Gallo, 2010.
"Comparison of Volatility Measures: a Risk Management Perspective,"
Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
- Christian T. Brownlees & Giampiero M. Gallo, 2007. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2007_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Giovanni Luca & Giampiero Gallo, 2009.
"Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
- Giovanni De Luca & Giampiero M. Gallo, 2005. "Time-varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometrics Working Papers Archive wp2005_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Giovanni De Luca & Giampiero Gallo, 2006. "Time-varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometrics Working Papers Archive wp2006_12, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013.
"Semiparametric Vector Mem,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2009. "Semiparametric vector MEM," Econometrics Working Papers Archive wp2009_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Engle, Robert F. & Gallo, Giampiero M., 2006.
"A multiple indicators model for volatility using intra-daily data,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- John M. Maheu & Thomas H. McCurdy, 2007. "Components of Market Risk and Return," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 560-590, Fall.
- Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002.
"Inflation, forecast intervals and long memory regression models,"
International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
- Charles S. Bos & Philip Hans Franses & Marius Ooms, 2001. "Inflation, Forecast Intervals and Long Memory Regression Models," Tinbergen Institute Discussion Papers 01-029/4, Tinbergen Institute.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
- Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- John M. Maheu & Thomas H. McCurdy, 2002.
"Nonlinear Features of Realized FX Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
- John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
- Giampiero M. Gallo & Edoardo Otranto, 2007.
"Volatility transmission across markets: a Multichain Markov Switching model,"
Applied Financial Economics, Taylor & Francis Journals, vol. 17(8), pages 659-670.
- Giampiero Gallo & Edoardo Otranto, 2006. "Volatility Transmission Across Markets: A Multi-Chain Markov Switching Model," Econometrics Working Papers Archive wp2006_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008.
"The Volatility of Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
- Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
- Baillie, Richard T. & Kapetanios, George, 2007.
"Testing for Neglected Nonlinearity in Long-Memory Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
- Richard T. Baillie & George Kapetanios, 2005. "Testing for Neglected Nonlinearity in Long Memory Models," Working Papers 528, Queen Mary University of London, School of Economics and Finance.
- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
- Maheu, John M. & McCurdy, Thomas H., 2011.
"Do high-frequency measures of volatility improve forecasts of return distributions?,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
- John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
- John M. Maheu & Thomas H. McCurdy, 2009. "Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?," Working Paper series 19_09, Rimini Centre for Economic Analysis.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- He, Zhongfang & Maheu, John M., 2010.
"Real time detection of structural breaks in GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
- Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper series 11_09, Rimini Centre for Economic Analysis.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Staff Working Papers 09-31, Bank of Canada.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Markku Lanne, 2006.
"A Mixture Multiplicative Error Model for Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
- Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Economics Working Papers ECO2006/3, European University Institute.
- Gourieroux, Christian & Monfort, Alain & Renault, Eric & Trognon, Alain, 1987. "Generalised residuals," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 5-32.
- Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Gallo, Giampiero M. & Otranto, Edoardo, 2008.
"Volatility spillovers, interdependence and comovements: A Markov Switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
- Giampiero Gallo & Edoardo Otranto, 2007. "Volatility Spillovers, Interdependence and Comovements: A Markov Switching Approach," Econometrics Working Papers Archive wp2007_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, November.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Scharth, Marcel & Medeiros, Marcelo C., 2009.
"Asymmetric effects and long memory in the volatility of Dow Jones stocks,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
- Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Kim, Chang-Jin, 1994.
"Dynamic linear models with Markov-switching,"
Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
- Kim, C-J., 1991. "Dynamic Linear Models with Markov-Switching," Papers 91-8, York (Canada) - Department of Economics.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
- Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
- Edoardo Otranto & Giampiero Gallo, 2002.
"A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
- Edoardo Otranto & Giampiero M. Gallo, 2001. "A Nonparametric Bayesian Approach to Detect the Number of Regimes in Markov Switching Models," Econometrics Working Papers Archive wp2001_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Dueker, Michael J, 1997.
"Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
- Michael J. Dueker, 1995. "Markov switching in GARCH processes and mean reverting stock market volatility," Working Papers 1994-015, Federal Reserve Bank of St. Louis.
- Zacharias Psaradakis & Nicola Spagnolo, 2003.
"On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
- Zacharias Psaradakis & Nicola Spagnolo, 2002. "On the Determination of the Number of Regimes in Markov-Switching Autoregressive Models," Computing in Economics and Finance 2002 83, Society for Computational Economics.
- Timo Teräsvirta, 2011. "Nonlinear models for autoregressive conditional heteroskedasticity," CREATES Research Papers 2011-02, Department of Economics and Business Economics, Aarhus University.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- Atsushi Inoue & Lutz Kilian, 2005.
"In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?,"
Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
- Kilian, Lutz & Inoue, Atsushi, 2002. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," CEPR Discussion Papers 3671, C.E.P.R. Discussion Papers.
- Inoue, Atsushi & Kilian, Lutz, 2002. "In-sample or out-of-sample tests of predictability: which one should we use?," Working Paper Series 195, European Central Bank.
- Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
- Helen Higgs & Andrew Worthington, 2004. "Transmission of returns and volatility in art markets: a multivariate GARCH analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 11(4), pages 217-222.
- Sebastian Edwards & Raul Susmel, 2003. "Interest-Rate Volatility in Emerging Markets," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 328-348, May.
- Andrew Worthington & Helen Higgs, 2004. "Transmission of equity returns and volatility in Asian developed and emerging markets: a multivariate GARCH analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 71-80.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Lam, Pok-sang, 1990. "The Hamilton model with a general autoregressive component: estimation and comparison with other models of economic time series : Estimation and comparison with other models of economic time series," Journal of Monetary Economics, Elsevier, vol. 26(3), pages 409-432, December.
- De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
- Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
- AUGUSTYNIAK, Maciej & BAUWENS, Luc & DUFAYS, Arnaud, 2016.
"A New Approach to Volatility Modeling : The High-Dimensional Markov Model,"
LIDAM Discussion Papers CORE
2016042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Arnaud Dufays & Maciej Augustyniak & Luc Bauwens, 2016. "A new approach to volatility modeling: the High-Dimensional Markov model," Cahiers de recherche 1609, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Giampiero M. Gallo & Edoardo Otranto, 2018.
"Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
- Giampiero M. Gallo & Edoardo Otranto, 2017. "Combining Sharp and Smooth Transitions in Volatility Dynamics: a Fuzzy Regime Approach," Econometrics Working Papers Archive 2017_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024.
"Doubly multiplicative error models with long- and short-run components,"
Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
- Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021.
"Realized volatility forecasting: Robustness to measurement errors,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
- Fabrizio Cipollini & Giampiero M. Gallo & Edoardo Otranto, 2019. "Realized Volatility Forecasting: Robustness to Measurement Errors," Econometrics Working Papers Archive 2019_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
- Harry-Paul Vander Elst, 2015.
"FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility,"
Working Papers ECARES
ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
- Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
- Catania, Leopoldo & Proietti, Tommaso, 2020.
"Forecasting volatility with time-varying leverage and volatility of volatility effects,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
- Leopoldo Catania & Tommaso Proietti, 2019. "Forecasting Volatility with Time-Varying Leverage and Volatility of Volatility Effects," CEIS Research Paper 450, Tor Vergata University, CEIS, revised 06 Feb 2019.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
More about this item
Keywords
Evaluating forecasts; MEM; Regime switching; Robustness; Volatility forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:3:p:620-634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.