IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.10474.html
   My bibliography  Save this paper

European Option Pricing in Regime Switching Framework via Physics-Informed Residual Learning

Author

Listed:
  • Naman Krishna Pande
  • Puneet Pasricha
  • Arun Kumar
  • Arvind Kumar Gupta

Abstract

In this article, we employ physics-informed residual learning (PIRL) and propose a pricing method for European options under a regime-switching framework, where closed-form solutions are not available. We demonstrate that the proposed approach serves an efficient alternative to competing pricing techniques for regime-switching models in the literature. Specifically, we demonstrate that PIRLs eliminate the need for retraining and become nearly instantaneous once trained, thus, offering an efficient and flexible tool for pricing options across a broad range of specifications and parameters.

Suggested Citation

  • Naman Krishna Pande & Puneet Pasricha & Arun Kumar & Arvind Kumar Gupta, 2024. "European Option Pricing in Regime Switching Framework via Physics-Informed Residual Learning," Papers 2410.10474, arXiv.org.
  • Handle: RePEc:arx:papers:2410.10474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.10474
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damir Filipović & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Swiss Finance Institute Research Paper Series 22-95, Swiss Finance Institute.
    2. Chen, Nan & Qi, Di, 2024. "A physics-informed data-driven algorithm for ensemble forecast of complex turbulent systems," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Oskari Mikkilä & Juho Kanniainen, 2023. "Empirical deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 111-122, January.
    4. Robert Elliott & Tak Kuen Siu & Leunglung Chan, 2007. "Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 41-62.
    5. Damir Filipovi'c & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Papers 2212.01048, arXiv.org, revised Jan 2025.
    6. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    7. Donatien Hainaut & Alex Casas, 2024. "Option pricing in the Heston model with physics inspired neural networks," Annals of Finance, Springer, vol. 20(3), pages 353-376, September.
    8. Naik, Vasanttilak, 1993. "Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns," Journal of Finance, American Finance Association, vol. 48(5), pages 1969-1984, December.
    9. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(4), pages 519-529, December.
    10. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
    11. He, Xin-Jiang & Zhu, Song-Ping, 2016. "An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 77-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    2. Mengzhe Zhang & Leunglung Chan, 2016. "Saddlepoint approximations to option price in a regime-switching model," Annals of Finance, Springer, vol. 12(1), pages 55-69, February.
    3. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    5. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    6. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
    7. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    8. Zhengjun Jiang & Martijn Pistorius, 2008. "Optimal dividend distribution under Markov-regime switching," Papers 0812.4978, arXiv.org, revised Apr 2011.
    9. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    10. John Driffill & Turalay Kenc & Martin Sola, 2013. "Real Options With Priced Regime-Switching Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-30.
    11. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Dec 2024.
    12. Simi, Wei W. & Wang, Xiaoli, 2013. "Time-changed Lévy jump processes with GARCH model on reverse convertibles," Review of Financial Economics, Elsevier, vol. 22(4), pages 206-212.
    13. Olkhov, Victor, 2014. "Expressions of market-based correlations between prices and returns of two assets," MPRA Paper 123009, University Library of Munich, Germany.
    14. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    15. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming & Tenyakov, Anton, 2015. "Mortality modelling with regime-switching for the valuation of a guaranteed annuity option," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 108-120.
    16. Jérôme Detemple & Yerkin Kitapbayev, 2018. "On American VIX options under the generalized 3/2 and 1/2 models," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 550-581, April.
    17. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    18. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    19. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    20. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.10474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.