IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p587-d345594.html
   My bibliography  Save this article

Theoretical Aspects on Measures of Directed Information with Simulations

Author

Listed:
  • Thomas Gkelsinis

    (Department of Statistics and Actuarial-Financial Mathematics, Lab of Statistics and Data Analysis, University of the Aegean, 83200 Karlovasi, Greece
    These authors contributed equally to this work.)

  • Alex Karagrigoriou

    (Department of Statistics and Actuarial-Financial Mathematics, Lab of Statistics and Data Analysis, University of the Aegean, 83200 Karlovasi, Greece
    These authors contributed equally to this work.)

Abstract

Measures of directed information are obtained through classical measures of information by taking into account specific qualitative characteristics of each event. These measures are classified into two main categories, the entropic and the divergence measures. Many times in statistics we wish to emphasize not only on the quantitative characteristics but also on the qualitative ones. For example, in financial risk analysis it is common to take under consideration the existence of fat tails in the distribution of returns of an asset (especially the left tail) and in biostatistics to use robust statistical methods to trim extreme values. Motivated by these needs in this work we present, study and provide simulations for measures of directed information. These measures quantify the information with emphasis on specific parts (or events) of their probability distribution, without losing the whole information of the less significant parts and at the same time by concentrating on the information of the parts we care about the most.

Suggested Citation

  • Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:587-:d:345594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shang, Junfeng & Cavanaugh, Joseph E., 2008. "Bootstrap variants of the Akaike information criterion for mixed model selection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2004-2021, January.
    2. Joseph E. Cavanaugh, 2004. "Criteria for Linear Model Selection Based on Kullback's Symmetric Divergence," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 46(2), pages 257-274, June.
    3. M. D. Jiménez-Gamero & A. Batsidis, 2017. "Minimum distance estimators for count data based on the probability generating function with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 503-545, July.
    4. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    5. Lee, Sangyeol & Vonta, Ilia & Karagrigoriou, Alex, 2011. "A maximum entropy type test of fit," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2635-2643, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marhuenda, Yolanda & Morales, Domingo & del Carmen Pardo, María, 2014. "Information criteria for Fay–Herriot model selection," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 268-280.
    2. G. Avlogiaris & A. C. Micheas & K. Zografos, 2019. "A Criterion for Local Model Selection," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 406-444, December.
    3. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    4. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    5. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    6. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    7. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    10. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    11. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    12. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    13. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    14. Robert Brooks & Robert Faff & Sirimon Treepongkaruna & Eliza Wu, 2015. "Do Sovereign Re-Ratings Destabilize Equity Markets during Financial Crises? New Evidence from Higher Return Moments," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 42(5-6), pages 777-799, June.
    15. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    16. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    17. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    18. F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
    19. Daisuke Nagakura & Toshiaki Watanabe, 2015. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 45-82.
    20. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:587-:d:345594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.