IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/7862.html
   My bibliography  Save this paper

Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies

Author

Listed:
  • Proietti, Tommaso
  • Riani, Marco

Abstract

We address the problem of seasonal adjustment of a nonlinear transformation of the original time series, such as the Box-Cox transformation of a time series measured on a ratio scale, or the Aranda-Ordaz transformation of proportions, which aims at enforcing two essential features: additivity and orthogonality of the components. The posterior mean and variance of the seasonally adjusted series admit an analytic finite representation only for particular values of the transformation parameter, e.g. for a fractional Box-Cox transformation parameter. Even if available, the analytical derivation can be tedious and difficult. As an alternative we propose to compute the two conditional moments of the seasonally adjusted series by means of numerical and Monte Carlo integration. The former is both fast and reliable in univariate applications. The latter uses the algorithm known as the simulation smoother and it is most useful in multivariate applications. We present several case studies dealing with robust seasonal adjustment under the square root and the fourth root transformation, the seasonal adjustment of the ratio of two series, and the adjustment of time series of proportions. Our overall conclusion is that robust seasonal adjustment under transformations can be carried out routinely and that the possibility of transforming the scale ought to be considered as a further option for improving the quality of seasonal adjustment.

Suggested Citation

  • Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:7862
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/7862/1/MPRA_paper_7862.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    2. Riani Marco, 2004. "Extensions of the Forward Search to Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-25, May.
    3. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    4. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    5. Harvey, Andrew & Proietti, Tommaso (ed.), 2005. "Readings in Unobserved Components Models," OUP Catalogue, Oxford University Press, number 9780199278695.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    7. J. A. John & N. R. Draper, 1980. "An Alternative Family of Transformations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 190-197, June.
    8. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    9. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    10. William S. Cleveland & Douglas M. Dunn & Irma J. Terpenning, 1978. "SABL: A Resistant Seasonal Adjustment Procedure With Graphical Methods for Interpretation and Diagnosis," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 201-241, National Bureau of Economic Research, Inc.
    11. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    12. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    2. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    2. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    3. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    4. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    6. Silhan, Peter A., 2014. "Income smoothing from a Census X-12 perspective," Advances in accounting, Elsevier, vol. 30(1), pages 106-115.
    7. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    8. Proietti, Tommaso, 2005. "New algorithms for dating the business cycle," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 477-498, April.
    9. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    10. Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. A Matas-Mir & D R Osborn, 2003. "Seasonal Adjustment and the Detection of Business Cycle Phases," Economics Discussion Paper Series 0304, Economics, The University of Manchester.
    12. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    13. S.M.Husnain Bokhari & Ishaque Ahmed Ansari, 2009. "Seasonal Adjustment Of Some Financial Indicators Of Pakistan," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 5(2), pages 107-123.
    14. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    15. Maravall, Agustín, 1999. "Seasonal outliers in time series," DES - Working Papers. Statistics and Econometrics. WS 6333, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
    17. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    18. Webel, Karsten, 2016. "A data-driven selection of an appropriate seasonal adjustment approach," Discussion Papers 07/2016, Deutsche Bundesbank.
    19. S. M. Husnain Bokhari & Ishaque Ahmed Ansari, 2009. "Seasonal Adjustment Of Some Financial Indicators Of Pakistan," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 5(2), pages 5-3.
    20. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.

    More about this item

    Keywords

    Structural Time Series Models; Box-Cox Transformation; Aranda–Ordaz Transformation; Simulation Smoother; Forward Search; Numerical Integration;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:7862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.