IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v36y2021i5p614-627.html
   My bibliography  Save this article

Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction

Author

Listed:
  • Mengheng Li
  • Siem Jan Koopman

Abstract

The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.

Suggested Citation

  • Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
  • Handle: RePEc:wly:japmet:v:36:y:2021:i:5:p:614-627
    DOI: 10.1002/jae.2831
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2831
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    3. James H. Stock & Mark W. Watson, 2016. "Core Inflation and Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
    4. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    5. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    6. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    7. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    8. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    9. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    10. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    13. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    14. Koopman, Siem Jan & Shephard, Neil (ed.), 2015. "Unobserved Components and Time Series Econometrics," OUP Catalogue, Oxford University Press, number 9780199683666.
    15. Andrew Harvey, 2011. "Modelling the Phillips curve with unobserved components," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 7-17.
    16. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    17. Robert J. Gordon, 1990. "The Phillips Curve Now and Then," NBER Working Papers 3393, National Bureau of Economic Research, Inc.
    18. Chang‐Jin Kim & Pym Manopimoke & Charles R. Nelson, 2014. "Trend Inflation and the Nature of Structural Breaks in the New Keynesian Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(2-3), pages 253-266, March.
    19. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    20. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    21. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    22. Elmar Mertens, 2016. "Measuring the Level and Uncertainty of Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 950-967, December.
    23. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    24. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    25. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    26. Cecchetti, Stephen & Feroli, Michael & Hooper, Peter & Kashyap, Anil & Schoenholtz, Kermit L., 2017. "Deflating Inflation Expectations: The Implications of Inflation’s Simple Dynamics," CEPR Discussion Papers 11925, C.E.P.R. Discussion Papers.
    27. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    2. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    3. Saeed Zaman, 2021. "A Unified Framework to Estimate Macroeconomic Stars," Working Papers 21-23R2, Federal Reserve Bank of Cleveland, revised 31 May 2024.
    4. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    5. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    6. Chen, Ji & Yang, Xinglin & Liu, Xiliang, 2022. "Learning, disagreement and inflation forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    7. Bowen Fu, Ivan Mendieta-Muñoz, 2023. "Structural shocks and trend inflation," Working Paper Series, Department of Economics, University of Utah 2023_04, University of Utah, Department of Economics.
    8. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    9. Juan Angel Garcia & Aubrey Poon, 2022. "Inflation trends in Asia: implications for central banks [Are Phillips curves useful for forecasting inflation?]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 671-700.
    10. Mertens, Elmar, 2023. "Precision-based sampling for state space models that have no measurement error," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    11. Terence D. Agbeyegbe, 2023. "The Link Between Output Growth and Output Growth Volatility: Barbados," Annals of Data Science, Springer, vol. 10(3), pages 787-804, June.
    12. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    13. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    14. Bańbura, Marta & Leiva-León, Danilo & Menz, Jan-Oliver, 2021. "Do inflation expectations improve model-based inflation forecasts?," Discussion Papers 48/2021, Deutsche Bundesbank.
    15. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    16. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    17. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2023. "Understanding trend inflation through the lens of the goods and services sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 751-766, August.
    18. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    19. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    20. Guido Ascari & Paolo Bonomolo & Qazi Haque, 2023. "The Long-Run Phillips Curve is ... a Curve," Working Papers 789, DNB.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:36:y:2021:i:5:p:614-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.