IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v85y2020ics0140988319303500.html
   My bibliography  Save this article

Volatility spillovers in commodity markets: A large t-vector autoregressive approach

Author

Listed:
  • Barbaglia, Luca
  • Croux, Christophe
  • Wilms, Ines

Abstract

Prices of commodities have shown large fluctuations. A high volatility of one commodity today may impact the volatility of another commodity tomorrow. As such, agricultural and energy commodities are closely dependent due to the expansion of the biofuel industry. We study volatility spillovers among a large number of energy, agriculture and biofuel commodities using the vector auto regressive (VAR) model. To account for the possible fat-tailed distribution of the model errors, we propose the t-lasso method for obtaining a large VAR. The t-lasso is shown to have excellent properties, and a forecast analysis shows that the t-lasso attains better forecast accuracy than standard estimators. Our empirical analysis shows the existence of volatility spillovers between energy and biofuel, and between energy and agricultural commodities.

Suggested Citation

  • Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:eneeco:v:85:y:2020:i:c:s0140988319303500
    DOI: 10.1016/j.eneco.2019.104555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319303500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.104555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nucera, Federico & Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2016. "The information in systemic risk rankings," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 461-475.
    2. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    3. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    4. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    5. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    6. Karali, Berna & Ramirez, Octavio A., 2014. "Macro determinants of volatility and volatility spillover in energy markets," Energy Economics, Elsevier, vol. 46(C), pages 413-421.
    7. Robert Engle & Eric Jondeau & Michael Rockinger, 2015. "Systemic Risk in Europe," Review of Finance, European Finance Association, vol. 19(1), pages 145-190.
    8. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    9. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    11. Beckman, Jayson F. & Borchers, Allison & Jones, Carol, 2013. "Agriculture's Supply and Demand for Energy and Energy Products," Economic Information Bulletin 149033, United States Department of Agriculture, Economic Research Service.
    12. Christopher R. Knittel & Robert S. Pindyck, 2016. "The Simple Economics of Commodity Price Speculation," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(2), pages 85-110, April.
    13. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    14. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    15. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    16. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    18. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    19. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    20. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    21. Anthony N. Rezitis, 2015. "The relationship between agricultural commodity prices, crude oil prices and US dollar exchange rates: a panel VAR approach and causality analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 403-434, May.
    22. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    23. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    24. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    25. Hassler, John & Sinn, Hans-Werner, 2016. "The fossil episode," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 14-26.
    26. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    27. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
    28. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
    29. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    30. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2010. "Price Transmission in the US Ethanol Market," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 55-72, Springer.
    31. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    32. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    33. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    34. Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
    35. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    36. Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017. "Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
    37. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    38. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    39. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.
    40. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    41. Anthony N. Rezitis, 2015. "Empirical Analysis of Agricultural Commodity Prices, Crude Oil Prices and US Dollar Exchange Rates using Panel Data Econometric Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 851-868.
    42. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, September.
    43. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    44. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    45. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    46. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
    47. Chang, Ting-Huan & Su, Hsin-Mei, 2010. "The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods," Energy, Elsevier, vol. 35(7), pages 2807-2813.
    48. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    49. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
    2. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    3. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    4. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
    5. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    6. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    7. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    8. Grosche, Stephanie & Heckelei, Thomas, 2014. "Directional Volatility Spillovers between Agricultural, Crude Oil, Real Estate and other Financial Markets," Discussion Papers 166079, University of Bonn, Institute for Food and Resource Economics.
    9. Liu, Pan & Power, Gabriel J. & Vedenov, Dmitry, 2021. "Fair-weather Friends? Sector-specific volatility connectedness and transmission," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 712-736.
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    12. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    13. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness," Resources Policy, Elsevier, vol. 73(C).
    14. Romain Menier & Guillaume Bagnarosa & Alexandre Gohin, 2024. "On the dependence structure of European vegetable oil markets," Post-Print hal-04523660, HAL.
    15. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    16. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    17. Apergis, Nicholas & Baruník, Jozef & Lau, Marco Chi Keung, 2017. "Good volatility, bad volatility: What drives the asymmetric connectedness of Australian electricity markets?," Energy Economics, Elsevier, vol. 66(C), pages 108-115.
    18. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    19. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    20. Brož, Václav & Kočenda, Evžen, 2022. "Mortgage-related bank penalties and systemic risk among U.S. banks," Journal of International Money and Finance, Elsevier, vol. 122(C).

    More about this item

    Keywords

    Commodities; Forecasting; Lasso; Multivariate t-distribution; Vector autoregressive model; Volatility spillover;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:85:y:2020:i:c:s0140988319303500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.