IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v52y2021ics1386418120300318.html
   My bibliography  Save this article

Measurement of common risks in tails: A panel quantile regression model for financial returns

Author

Listed:
  • Baruník, Jozef
  • Čech, František

Abstract

We investigate how to measure common risks in the tails of return distributions using the recently proposed panel quantile regression model for financial returns. By exploring how volatility crosses all quantiles of the return distribution and using a fixed effects estimator, we can control for otherwise unobserved heterogeneity among financial assets. Direct benefits are revealed in a portfolio value-at-risk application, where our modeling strategy performs significantly better than several benchmark models. In particular, our results show that the panel quantile regression model for returns consistently outperforms all competitors in the left tail. Sound statistical performance translates directly into economic gains.

Suggested Citation

  • Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
  • Handle: RePEc:eee:finmar:v:52:y:2021:i:c:s1386418120300318
    DOI: 10.1016/j.finmar.2020.100562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418120300318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.finmar.2020.100562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    2. Manski, Charles F., 1986. "Ordinal Utility Models Of Decision Making Under Uncertainty," SSRI Workshop Series 292682, University of Wisconsin-Madison, Social Systems Research Institute.
    3. Neil Foster-McGregor & Anders Isaksson & Florian Kaulich, 2014. "Importing, exporting and performance in sub-Saharan African manufacturing firms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 150(2), pages 309-336, May.
    4. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    5. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    7. Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
    8. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    9. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    10. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    11. Covas, Francisco B. & Rump, Ben & Zakrajšek, Egon, 2014. "Stress-testing US bank holding companies: A dynamic panel quantile regression approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 691-713.
    12. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    13. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    14. Bruno C. Giovannetti, 2013. "Asset pricing under quantile utility maximization," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 169-179, November.
    15. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    16. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    17. Harding, Matthew & Lamarche, Carlos, 2009. "A quantile regression approach for estimating panel data models using instrumental variables," Economics Letters, Elsevier, vol. 104(3), pages 133-135, September.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Luciano de Castro & Antonio F. Galvao, 2019. "Dynamic Quantile Models of Rational Behavior," Econometrica, Econometric Society, vol. 87(6), pages 1893-1939, November.
    20. Ott Toomet, 2011. "Learn English, Not the Local Language! Ethnic Russians in the Baltic States," American Economic Review, American Economic Association, vol. 101(3), pages 526-531, May.
    21. Lorenzo Cappiello & Bruno Gérard & Arjan Kadareja & Simone Manganelli, 2014. "Measuring Comovements by Regression Quantiles," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 645-678.
    22. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    23. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    24. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    25. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    26. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    27. Chambers, Christopher P., 2007. "Ordinal aggregation and quantiles," Journal of Economic Theory, Elsevier, vol. 137(1), pages 416-431, November.
    28. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    29. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
    30. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    31. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, vol. 3(3), pages 1-13, September.
    32. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
    33. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    34. Harding, Matthew & Lamarche, Carlos, 2014. "Estimating and testing a quantile regression model with interactive effects," Journal of Econometrics, Elsevier, vol. 178(P1), pages 101-113.
    35. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    36. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    37. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    38. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    39. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    40. David Powell & Joachim Wagner, 2021. "The Exporter Productivity Premium Along the Productivity Distribution: Evidence from Quantile Regression with Nonadditive Firm Fixed Effects," World Scientific Book Chapters, in: Joachim Wagner (ed.), MICROECONOMETRIC STUDIES OF FIRMS’ IMPORTS AND EXPORTS Advanced Methods of Analysis and Evidence from German Enterprises, chapter 9, pages 121-149, World Scientific Publishing Co. Pte. Ltd..
    41. Galvao, Antonio F. & Wang, Liang, 2015. "Efficient minimum distance estimator for quantile regression fixed effects panel data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 1-26.
    42. Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010. "The trade-growth nexus in the developing countries: a quantile regression approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
    43. Christian M. Dahl & Daniel le Maire & Jakob R. Munch, 2013. "Wage Dispersion and Decentralization of Wage Bargaining," Journal of Labor Economics, University of Chicago Press, vol. 31(3), pages 501-533.
    44. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    45. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    46. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    47. Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
    48. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    49. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    50. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    51. Klomp, Jeroen & Haan, Jakob de, 2012. "Banking risk and regulation: Does one size fit all?," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3197-3212.
    52. Sherrilyn Billger & Carlos Lamarche, 2015. "A panel data quantile regression analysis of the immigrant earnings distribution in the United Kingdom and United States," Empirical Economics, Springer, vol. 49(2), pages 705-750, September.
    53. Lamarche, Carlos, 2011. "Measuring the incentives to learn in Colombia using new quantile regression approaches," Journal of Development Economics, Elsevier, vol. 96(2), pages 278-288, November.
    54. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    55. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    56. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    57. Lamarche, Carlos, 2008. "Private school vouchers and student achievement: A fixed effects quantile regression evaluation," Labour Economics, Elsevier, vol. 15(4), pages 575-590, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chavas, Jean-Paul & Li, Jian & Wang, Linjie, 2024. "Option pricing revisited: The role of price volatility and dynamics," Journal of Commodity Markets, Elsevier, vol. 33(C).
    2. Qicheng Zhao & Zhouwei Wang & Yuping Song, 2024. "Systematic Research on Multi-dimensional and Multiple Correlation Contagion Networks of Extreme Risk in China’s Banking Industry," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1137-1162, August.
    3. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    4. Siddique, Md Abubakar & Nobanee, Haitham & Karim, Sitara & Naz, Farah, 2023. "Do green financial markets offset the risk of cryptocurrencies and carbon markets?," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 822-833.
    5. Shafiullah, Muhammad & Senthilkumar, Arunachalam & Lucey, Brian M. & Naeem, Muhammad Abubakr, 2024. "Deciphering asymmetric spillovers in US industries: Insights from higher-order moments," Research in International Business and Finance, Elsevier, vol. 70(PA).
    6. Yousaf, Imran & Pham, Linh & Goodell, John W., 2023. "Interconnectedness between healthcare tokens and healthcare stocks: Evidence from a quantile VAR approach," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 271-283.
    7. de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    8. Chavas, Jean-Paul & Li, Jian & Wang, Linjie, 2024. "Option Pricing Revisited: The Role of Price Volatility and Dynamics," 2024 Annual Meeting, July 28-30, New Orleans, LA 343544, Agricultural and Applied Economics Association.
    9. Cosmin Octavian Cepoi & Victor Dragotă & Ruxandra Trifan & Andreea Iordache, 2023. "Probability of informed trading during the COVID-19 pandemic: the case of the Romanian stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    2. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    3. František Čech & Jozef Baruník, 2019. "Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
    4. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    5. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    6. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    7. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    8. Panayiotis Tzeremes, 2022. "The Asymmetric Effects of Regional House Prices in the UK: New Evidence from Panel Quantile Regression Framework," Studies in Microeconomics, , vol. 10(1), pages 7-22, June.
    9. Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," The Warwick Economics Research Paper Series (TWERPS) 1230, University of Warwick, Department of Economics.
    10. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    11. Dogan, Eyup & Altinoz, Buket & Tzeremes, Panayiotis, 2020. "The analysis of ‘Financial Resource Curse’ hypothesis for developed countries: Evidence from asymmetric effects with quantile regression," Resources Policy, Elsevier, vol. 68(C).
    12. Alexander Blasberg & Rüdiger Kiesel & Luca Taschini, 2022. "Carbon Default Swap - Disentangling the Exposure to Carbon Risk through CDS," CESifo Working Paper Series 10016, CESifo.
    13. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    14. Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
    15. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    16. Xiao, Zhijie & Xu, Lan, 2019. "What do mean impacts miss? Distributional effects of corporate diversification," Journal of Econometrics, Elsevier, vol. 213(1), pages 92-120.
    17. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    18. Luciano de Castro & Antonio F. Galvao & Gabriel Montes-Rojas & Jose Olmo, 2022. "Portfolio selection in quantile decision models," Annals of Finance, Springer, vol. 18(2), pages 133-181, June.
    19. Jorge Eduardo Camusso & Ana Inés Navarro, 2021. "Asymmetries in aggregate income risk over the business cycle: evidence from administrative data of Argentina," Asociación Argentina de Economía Política: Working Papers 4447, Asociación Argentina de Economía Política.
    20. Philip Kostov & Julie Le Gallo, 2018. "What role for human capital in the growth process: new evidence from endogenous latent factor panel quantile regressions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(5), pages 501-527, November.

    More about this item

    Keywords

    Panel quantile regression; Realized measures; Value-at-risk;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:52:y:2021:i:c:s1386418120300318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/finmar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.