IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.03434.html
   My bibliography  Save this paper

How to verify that a given process is a L\'evy-Driven Ornstein-Uhlenbeck Process

Author

Listed:
  • Ibrahim Abdelrazeq

    (Rhodes College)

  • Hardy Smith

    (Rhodes College)

  • Dinmukhammed Zhanbyrshy

    (Rhodes College)

Abstract

Assuming that a L\'evy-Driven Ornstein-Uhlenbeck (or CAR(1)) processes is observed at discrete times $0$, $h$, $2h$,$\cdots$ $[T/h]h$. We introduce a step-by-step methodological approach on how a person would verify the model assumptions. The methodology involves estimating the model parameters and approximating the driving process. We demonstrate how to use the increments of the approximated driving process, along with the estimated parameters, to test the assumptions that the CAR(1) process is L\'evy-driven. We then show how to test the hypothesis that the CAR(1) process belongs to a specified class of L\'evy processes. The performance of the tests is illustrated through multiple simulations. Finally, we demonstrate how to apply the methodology step-by-step to a variety of economic and financial data examples.

Suggested Citation

  • Ibrahim Abdelrazeq & Hardy Smith & Dinmukhammed Zhanbyrshy, 2025. "How to verify that a given process is a L\'evy-Driven Ornstein-Uhlenbeck Process," Papers 2501.03434, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2501.03434
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.03434
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Murray D. & Gombay, Edit, 1988. "On goodness-of-fit and the bootstrap," Statistics & Probability Letters, Elsevier, vol. 6(5), pages 287-293, April.
    2. Winfried Stute & Wenceslao Manteiga & Manuel Quindimil, 1993. "Bootstrap based goodness-of-fit-tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 243-256, December.
    3. Estate V. Khmaladze, 2021. "How to test that a given process is an Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 405-419, July.
    4. Davis, Richard A. & McCormick, William P., 1989. "Estimation for first-order autoregressive processes with positive or bounded innovations," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 237-250, April.
    5. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Anders Eriksson & Daniel P. A. Preve & Jun Yu, 2019. "Forecasting Realized Volatility Using a Nonnegative Semiparametric Model," JRFM, MDPI, vol. 12(3), pages 1-23, August.
    3. Ching-Kang Ing & Chiao-Yi Yang, 2014. "Predictor Selection for Positive Autoregressive Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 243-253, March.
    4. Lillestöl, Jostein, 2002. "Some crude approximation, calibration and estimation procedures for NIG-variates," SFB 373 Discussion Papers 2002,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    6. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    7. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    8. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    9. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    10. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    11. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    12. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    13. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    14. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    16. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    17. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    18. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    19. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    20. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.03434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.