IDEAS home Printed from https://ideas.repec.org/a/eee/jfinec/v141y2021i2p573-599.html
   My bibliography  Save this article

Pervasive underreaction: Evidence from high-frequency data

Author

Listed:
  • Jiang, Hao
  • Li, Sophia Zhengzi
  • Wang, Hao

Abstract

We propose a novel high-frequency decomposition of daily stock returns into news- and non-news-driven components, and uncover evidence of pervasive stock market underreaction to firm news. Prices tend to drift in the same direction as the initial market response for several days after the news arrival without reversals. A trading strategy exploiting the return drift generates high abnormal returns and remains profitable after transaction costs. To understand the economic mechanism, we find that the return drift is stronger when investors are distracted. Analysts’ slow adjustments of market expectations following firm news also contribute to the market underreaction.

Suggested Citation

  • Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
  • Handle: RePEc:eee:jfinec:v:141:y:2021:i:2:p:573-599
    DOI: 10.1016/j.jfineco.2021.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304405X21001306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfineco.2021.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    2. Jean‐Philippe Bouchaud & Philipp Krüger & Augustin Landier & David Thesmar, 2019. "Sticky Expectations and the Profitability Anomaly," Journal of Finance, American Finance Association, vol. 74(2), pages 639-674, April.
    3. Stefan Nagel, 2012. "Evaporating Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 25(7), pages 2005-2039.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Melissa Porras Prado & Pedro A. C. Saffi & Jason Sturgess, 2016. "Ownership Structure, Limits to Arbitrage, and Stock Returns: Evidence from Equity Lending Markets," The Review of Financial Studies, Society for Financial Studies, vol. 29(12), pages 3211-3244.
    6. Gao, Lei & Han, Yufeng & Zhengzi Li, Sophia & Zhou, Guofu, 2018. "Market intraday momentum," Journal of Financial Economics, Elsevier, vol. 129(2), pages 394-414.
    7. Reena Aggarwal & Pedro A. C. Saffi & Jason Sturgess, 2015. "The Role of Institutional Investors in Voting: Evidence from the Securities Lending Market: Erratum," Journal of Finance, American Finance Association, vol. 70(6), pages 2901-2902, December.
    8. Andrew J. Patton & Michela Verardo, 2012. "Does Beta Move with News? Firm-Specific Information Flows and Learning about Profitability," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2789-2839.
    9. Bernard, Vl & Thomas, Jk, 1989. "Post-Earnings-Announcement Drift - Delayed Price Response Or Risk Premium," Journal of Accounting Research, Wiley Blackwell, vol. 27, pages 1-36.
    10. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974, Elsevier.
    11. Savor, Pavel G., 2012. "Stock returns after major price shocks: The impact of information," Journal of Financial Economics, Elsevier, vol. 106(3), pages 635-659.
    12. Reena Aggarwal & Pedro A. C. Saffi & Jason Sturgess, 2015. "The Role of Institutional Investors in Voting: Evidence from the Securities Lending Market," Journal of Finance, American Finance Association, vol. 70(5), pages 2309-2346, October.
    13. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    14. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    15. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    16. David O. Lucca & Emanuel Moench, 2015. "The Pre-FOMC Announcement Drift," Journal of Finance, American Finance Association, vol. 70(1), pages 329-371, February.
    17. Savor, Pavel & Wilson, Mungo, 2013. "How Much Do Investors Care About Macroeconomic Risk? Evidence from Scheduled Economic Announcements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 343-375, April.
    18. Paul C. Tetlock, 2011. "All the News That's Fit to Reprint: Do Investors React to Stale Information?," The Review of Financial Studies, Society for Financial Studies, vol. 24(5), pages 1481-1512.
    19. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    20. repec:oup:revfin:v:29:y:2016:i:12:p:3211-3244. is not listed on IDEAS
    21. Daniel, Kent, et al, 1997. "Measuring Mutual Fund Performance with Characteristic-Based Benchmarks," Journal of Finance, American Finance Association, vol. 52(3), pages 1035-1058, July.
    22. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    23. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    24. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    25. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    26. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 1, March.
    27. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    28. Lauren Cohen & Karl Diether & Christopher Malloy, 2013. "Misvaluing Innovation," The Review of Financial Studies, Society for Financial Studies, vol. 26(3), pages 635-666.
    29. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    30. Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
    31. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    32. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    33. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    34. Somnath Das & Re‐Jin Guo & Huai Zhang, 2006. "Analysts' Selective Coverage and Subsequent Performance of Newly Public Firms," Journal of Finance, American Finance Association, vol. 61(3), pages 1159-1185, June.
    35. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    36. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    37. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    38. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    39. Roberto C. Gutierrez & Eric K. Kelley, 2008. "The Long‐Lasting Momentum in Weekly Returns," Journal of Finance, American Finance Association, vol. 63(1), pages 415-447, February.
    40. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    41. Eric K. Kelley & Paul C. Tetlock, 2017. "Retail Short Selling and Stock Prices," The Review of Financial Studies, Society for Financial Studies, vol. 30(3), pages 801-834.
    42. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    43. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    44. Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
    45. Ball, R & Brown, P, 1968. "Empirical Evaluation Of Accounting Income Numbers," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 159-178.
    46. Pedro A. C. Saffi & Kari Sigurdsson, 2011. "Price Efficiency and Short Selling," The Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 821-852.
    47. Hoechle, Daniel & Schaub, nic & Schmid, Markus, 2012. "Time Stamp Errors and the Stock Price Reaction to Analyst Recommendation and Forecast Revisions," Working Papers on Finance 1215, University of St. Gallen, School of Finance, revised Sep 2015.
    48. Nicholas C. Barberis, 2018. "Psychology-based Models of Asset Prices and Trading Volume," NBER Working Papers 24723, National Bureau of Economic Research, Inc.
    49. Anna Scherbina, 2008. "Suppressed Negative Information and Future Underperformance," Review of Finance, European Finance Association, vol. 12(3), pages 533-565.
    50. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    51. Stefano Dellavigna & Joshua M. Pollet, 2009. "Investor Inattention and Friday Earnings Announcements," Journal of Finance, American Finance Association, vol. 64(2), pages 709-749, April.
    52. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    53. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    54. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    55. Jonathan Lewellen, 2002. "Momentum and Autocorrelation in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 533-564, March.
    56. David Hirshleifer & Sonya Seongyeon Lim & Siew Hong Teoh, 2009. "Driven to Distraction: Extraneous Events and Underreaction to Earnings News," Journal of Finance, American Finance Association, vol. 64(5), pages 2289-2325, October.
    57. Kaul, Gautam & Nimalendran, M., 1990. "Price reversals *1: Bid-ask errors or market overreaction?," Journal of Financial Economics, Elsevier, vol. 28(1-2), pages 67-93.
    58. Pavel Savor & Mungo Wilson, 2016. "Earnings Announcements and Systematic Risk," Journal of Finance, American Finance Association, vol. 71(1), pages 83-138, February.
    59. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 2, March.
    60. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulio Bottazzi & Daniele Giachini, 2022. "Strategically Biased Learning In Market Interactions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 25(02n03), pages 1-18, March.
    2. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
    3. Liu, Chunyuan & Han, Liyan & Chu, Gang, 2023. "The effect of overnight corporate announcements on price discovery," Finance Research Letters, Elsevier, vol. 53(C).
    4. Wu, Shue-Jen, 2023. "The role of the past long-run oil price changes in stock market," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 274-291.
    5. Jianfei Zhang & Mathieu Rosenbaum, 2023. "Towards systematic intraday news screening: a liquidity-focused approach," Papers 2304.05115, arXiv.org.
    6. Ikhlaas Gurrib & Firuz Kamalov & Elgilani E. Alshareif, 2022. "High Frequency Return and Risk Patterns in U.S. Sector ETFs during COVID-19," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 441-456, September.
    7. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    8. Rick Steinert & Saskia Altmann, 2023. "Linking microblogging sentiments to stock price movement: An application of GPT-4," Papers 2308.16771, arXiv.org.
    9. Cao, Ji & Rieger, Marc Oliver & Zhao, Lei, 2023. "Safety first, loss probability, and the cross section of expected stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 345-369.
    10. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    11. Pigorsch, Uta & Schäfer, Sebastian, 2024. "Reversal of Monday returns: It is the afternoon that matters," Finance Research Letters, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    2. Jiang, George J. & Zhu, Kevin X., 2017. "Information Shocks and Short-Term Market Underreaction," Journal of Financial Economics, Elsevier, vol. 124(1), pages 43-64.
    3. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    4. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    5. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    6. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    7. Fung, Scott & Obaid, Khaled & Tsai, Shih-Chuan, 2024. "Information acquisition and processing skills of institutions and retail investors around information shocks," Journal of Empirical Finance, Elsevier, vol. 77(C).
    8. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    9. Cakici, Nusret & Zaremba, Adam & Bianchi, Robert J. & Pham, Nga, 2021. "False discoveries in the anomaly research: New insights from the Stock Exchange of Melbourne (1927–1987)," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    10. Martin H. Schmidt, 2017. "Trading strategies based on past returns: evidence from Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(2), pages 201-256, May.
    11. Azevedo, Vitor, 2023. "Analysts’ underreaction and momentum strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    12. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    13. Savor, Pavel G., 2012. "Stock returns after major price shocks: The impact of information," Journal of Financial Economics, Elsevier, vol. 106(3), pages 635-659.
    14. Auer, Benjamin R. & Rottmann, Horst, 2019. "Have capital market anomalies worldwide attenuated in the recent era of high liquidity and trading activity?," Journal of Economics and Business, Elsevier, vol. 103(C), pages 61-79.
    15. Chordia, Tarun & Subrahmanyam, Avanidhar & Tong, Qing, 2014. "Have capital market anomalies attenuated in the recent era of high liquidity and trading activity?," Journal of Accounting and Economics, Elsevier, vol. 58(1), pages 41-58.
    16. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    17. Wang, Qingxia & Faff, Robert & Zhu, Min, 2022. "Realized moments and the cross-sectional stock returns around earnings announcements," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 408-427.
    18. Shai Levi & Xiao-Jun Zhang, 2015. "Do Temporary Increases in Information Asymmetry Affect the Cost of Equity?," Management Science, INFORMS, vol. 61(2), pages 354-371, February.
    19. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    20. Chen, Linda H. & Jiang, George J. & Zhu, Kevin X., 2018. "Total attention: The effect of macroeconomic news on market reaction to earnings news," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 142-156.

    More about this item

    Keywords

    Underreaction; High-frequency; News; Attention; Expectation formation;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:141:y:2021:i:2:p:573-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505576 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.