IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v33y2025icp209-229.html
   My bibliography  Save this article

Multiplicative Error Models: 20 years on

Author

Listed:
  • Cipollini, Fabrizio
  • Gallo, Giampiero M.

Abstract

The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.

Suggested Citation

  • Cipollini, Fabrizio & Gallo, Giampiero M., 2025. "Multiplicative Error Models: 20 years on," Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
  • Handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:209-229
    DOI: 10.1016/j.ecosta.2022.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000740
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:209-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.