IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.17153.html
   My bibliography  Save this paper

A Bayesian Perspective on the Maximum Score Problem

Author

Listed:
  • Christopher D. Walker

Abstract

This paper presents a Bayesian inference framework for a linear index threshold-crossing binary choice model that satisfies a median independence restriction. The key idea is that the model is observationally equivalent to a probit model with nonparametric heteroskedasticity. Consequently, Gibbs sampling techniques from Albert and Chib (1993) and Chib and Greenberg (2013) lead to a computationally attractive Bayesian inference procedure in which a Gaussian process forms a conditionally conjugate prior for the natural logarithm of the skedastic function.

Suggested Citation

  • Christopher D. Walker, 2024. "A Bayesian Perspective on the Maximum Score Problem," Papers 2410.17153, arXiv.org.
  • Handle: RePEc:arx:papers:2410.17153
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.17153
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    2. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Jason R. Blevins & Shakeeb Khan, 2013. "Distribution-free estimation of heteroskedastic binary response models in Stata," Stata Journal, StataCorp LP, vol. 13(3), pages 588-602, September.
    5. Khan, Shakeeb, 2013. "Distribution free estimation of heteroskedastic binary response models using Probit/Logit criterion functions," Journal of Econometrics, Elsevier, vol. 172(1), pages 168-182.
    6. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    7. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    8. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    9. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2015. "Classical Laplace estimation for n3-consistent estimators: Improved convergence rates and rate-adaptive inference," Journal of Econometrics, Elsevier, vol. 187(1), pages 201-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    3. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    4. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    5. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
    6. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    7. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    8. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    9. Caudill, Steven B., 2003. "Predicting discrete outcomes with the maximum score estimator: the case of the NCAA men's basketball tournament," International Journal of Forecasting, Elsevier, vol. 19(2), pages 313-317.
    10. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    11. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    12. Igor Fedotenkov, 2013. "Consistency of the estimator of binary response models based on AUC maximization," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 381-390, August.
    13. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    14. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    15. Tiziano Arduini & Giuseppe De Arcangelis & Carlo L. Del Bello, 2012. "Balance-of-Payments Crises During the Great Recession: Is This Time Different?," Review of International Economics, Wiley Blackwell, vol. 20(3), pages 517-534, August.
    16. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    17. Edoardo Rainone, 2017. "Pairwise trading in the money market during the European sovereign debt crisis," Temi di discussione (Economic working papers) 1160, Bank of Italy, Economic Research and International Relations Area.
    18. Lee, Sokbae & Seo, Myung Hwan, 2008. "Semiparametric estimation of a binary response model with a change-point due to a covariate threshold," Journal of Econometrics, Elsevier, vol. 144(2), pages 492-499, June.
    19. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Arduini, Tiziano & De Arcangelis, Giuseppe & Del Bello, Carlo Leone, 2011. "Currency Crises During the Great Recession: Is This Time Different?," MPRA Paper 36528, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.17153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.