IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i1p15-44.html
   My bibliography  Save this article

Abelian theorems for stochastic volatility models with application to the estimation of jump activity

Author

Listed:
  • Belomestny, Denis
  • Panov, Vladimir

Abstract

In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X,V) where both the state process X and the volatility process V may have jumps. Our results relate the asymptotic behavior of the characteristic function of XΔ for some Δ>0 in a stationary regime to the Blumenthal–Getoor indexes of the Lévy processes driving the jumps in X and V. The results obtained are used to construct consistent estimators for the above Blumenthal–Getoor indexes based on low-frequency observations of the state process X. We derive convergence rates for the corresponding estimator and show that these rates cannot be improved in general.

Suggested Citation

  • Belomestny, Denis & Panov, Vladimir, 2013. "Abelian theorems for stochastic volatility models with application to the estimation of jump activity," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 15-44.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:15-44
    DOI: 10.1016/j.spa.2012.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. Belomestny, Denis, 2009. "Spectral estimation of the fractional order of a Lévy process," SFB 649 Discussion Papers 2009-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    2. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    3. Bjørn Eraker & Ivan Shaliastovich, 2008. "An Equilibrium Guide To Designing Affine Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 519-543, October.
    4. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    5. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.
    6. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    7. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    8. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    9. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    10. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    11. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    12. Josef Danv{e}k & J. Posp'iv{s}il, 2020. "Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models," Papers 2006.13181, arXiv.org.
    13. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    14. Baule, Rainer & Shkel, David, 2021. "Model risk and model choice in the case of barrier options and bonus certificates," Journal of Banking & Finance, Elsevier, vol. 133(C).
    15. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    16. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    17. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    18. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    19. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    20. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:15-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.