Moment conditions and Bayesian nonparametrics
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
Other versions of this item:
- Luke Bornn & Neil Shephard & Reza Solgi, 2019. "Moment conditions and Bayesian non‐parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 5-43, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Yusuke Narita & Kohei Yata, 2021.
"Algorithm is Experiment: Machine Learning, Market Design, and Policy Eligibility Rules,"
Working Papers
2021-022, Human Capital and Economic Opportunity Working Group.
- Yusuke Narita & Kohei Yata, 2021. "Algorithm is Experiment: Machine Learning, Market Design, and Policy Eligibility Rules," Cowles Foundation Discussion Papers 2283, Cowles Foundation for Research in Economics, Yale University.
- Yusuke Narita & Kohei Yata, 2021. "Algorithm as Experiment: Machine Learning, Market Design, and Policy Eligibility Rules," Papers 2104.12909, arXiv.org, revised Dec 2023.
- NARITA Yusuke & YATA Kohei, 2021. "Algorithm is Experiment: Machine Learning, Market Design, and Policy Eligibility Rules," Discussion papers 21057, Research Institute of Economy, Trade and Industry (RIETI).
- Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-01-18 (Econometrics)
- NEP-ECM-2016-02-04 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:360971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Brandon (email available below). General contact details of provider: https://edirc.repec.org/data/cbrssus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.