IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i2d10.1007_s11203-018-9180-1.html
   My bibliography  Save this article

Oracle inequalities for the stochastic differential equations

Author

Listed:
  • E. A. Pchelintsev

    (Tomsk State University)

  • S. M. Pergamenshchikov

    (University of Rouen
    Tomsk State University
    National Research University “MPEI”)

Abstract

This paper is a survey of recent results on the adaptive robust non parametric methods for the continuous time regression model with the semi-martingale noises with jumps. The noises are modeled by the Lévy processes, the Ornstein–Uhlenbeck processes and semi-Markov processes. We represent the general model selection method and the sharp oracle inequalities methods which provide the robust efficient estimation in the adaptive setting. Moreover, we present the recent results on the improved model selection methods for the nonparametric estimation problems.

Suggested Citation

  • E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9180-1
    DOI: 10.1007/s11203-018-9180-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-9180-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-018-9180-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fourdrinier, Dominique & Strawderman, William E., 1996. "A Paradox Concerning Shrinkage Estimators: Should a Known Scale Parameter Be Replaced by an Estimated Value in the Shrinkage Factor?," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 109-140, November.
    2. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    3. V. Konev & S. Pergamenshchikov, 2003. "Sequential Estimation of the Parameters in a Trigonometric Regression Model with the Gaussian Coloured Noise," Statistical Inference for Stochastic Processes, Springer, vol. 6(3), pages 215-235, October.
    4. D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.
    5. {L}ukasz Delong & Claudia Kluppelberg, 2008. "Optimal investment and consumption in a Black--Scholes market with L\'evy-driven stochastic coefficients," Papers 0806.2570, arXiv.org.
    6. Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
    7. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    8. Reinhard Höpfner & Yury Kutoyants, 2010. "Estimating discontinuous periodic signals in a time inhomogeneous diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 13(3), pages 193-230, October.
    9. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.
    10. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Povzun, 2022. "Efficient estimation methods for non-Gaussian regression models in continuous time," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 113-142, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
    4. Vlad Stefan Barbu & Slim Beltaief & Sergey Pergamenshchikov, 2019. "Robust adaptive efficient estimation for semi-Markov nonparametric regression models," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 187-231, July.
    5. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    6. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    7. Ziehaus Christina, 2012. "A note on optimal consumption and investment in a geometric Ornstein–Uhlenbeck market," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 269-280, August.
    8. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    9. Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
    10. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    11. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    12. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    13. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    14. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    16. Ole Barndorff-Nielsen & Neil Shephard, 2004. "Multipower Variation and Stochastic Volatility," Economics Papers 2004-W30, Economics Group, Nuffield College, University of Oxford.
    17. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    18. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    19. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    20. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9180-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.