IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202171.html
   My bibliography  Save this paper

Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint

Author

Listed:
  • Ahdi Noomen Ajmi

    (Department of Business Administration, College of Science and Humanities in Slayel, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia)

  • Roula Inglesi-Lotz

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

The purpose of this study is to examine the validity of the EKC hypothesis for Tunisia for the period from 1965 to 2013 by using the CO2 emissions and the Ecological footprint as proxies for environmental degradation, with the latter being considered in the literature as a more inclusive indicator. The findings of the estimation stipulate a U-shaped curve between CO2 emissions and real per capita GDP meaning that the EKC hypothesis is not valid for this period in Tunisia. However, when using the EF as a proxy for environmental degradation, the results indicate that the EKC hypothesis is valid for Tunisia. The results have significant policy implications, except for the fact that the use of only the CO2 emissions as a proxy for environmental degradation would provide misleading direction to policymakers. The confirmation of the EKC hypothesis implies that the country's policies should be persistent in aiming to improve overall environmental quality.

Suggested Citation

  • Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202171
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch & Mark E. Wohar, 2018. "Terror attacks and stock-market fluctuations: evidence based on a nonparametric causality-in-quantiles test for the G7 countries," The European Journal of Finance, Taylor & Francis Journals, vol. 24(4), pages 333-346, March.
    4. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
    5. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    6. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    8. Riza Demirer & Rangan Gupta & Qiang Ji & Aviral Kumar Tiwari, 2018. "Geopolitical Risks and the Predictability of Regional Oil Returns and Volatility," Working Papers 201860, University of Pretoria, Department of Economics.
    9. Gupta, Rangan & Yoon, Seong-Min, 2018. "OPEC news and predictability of oil futures returns and volatility: Evidence from a nonparametric causality-in-quantiles approach," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 206-214.
    10. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
    11. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    13. Antonakakis, Nikolaos & Gupta, Rangan & Kollias, Christos & Papadamou, Stephanos, 2017. "Geopolitical risks and the oil-stock nexus over 1899–2016," Finance Research Letters, Elsevier, vol. 23(C), pages 165-173.
    14. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    15. Plakandaras, Vasilios & Gupta, Rangan & Wong, Wing-Keung, 2019. "Point and density forecasts of oil returns: The role of geopolitical risks," Resources Policy, Elsevier, vol. 62(C), pages 580-587.
    16. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    17. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    18. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    19. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    20. repec:hal:journl:peer-00741630 is not listed on IDEAS
    21. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    22. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    23. Mun, Kyung-Chun, 2007. "Volatility and correlation in international stock markets and the role of exchange rate fluctuations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(1), pages 25-41, February.
    24. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    25. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
    26. Hong-Ghi Min & Judith A. McDonald & Sang-Ook Shin, 2016. "What Makes a Safe Haven? Equity and Currency Returns for Six OECD Countries during the Financial Crisis," Annals of Economics and Finance, Society for AEF, vol. 17(2), pages 365-402, November.
    27. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    28. Boudt, Kris & Petitjean, Mikael, 2014. "Intraday liquidity dynamics and news releases around price jumps: Evidence from the DJIA stocks," Journal of Financial Markets, Elsevier, vol. 17(C), pages 121-149.
    29. Jerry Tsai & Jessica A. Wachter, 2014. "Rare Booms and Disasters in a Multi-sector Endowment Economy," NBER Working Papers 20062, National Bureau of Economic Research, Inc.
    30. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "Exchange rate returns and volatility: the role of time-varying rare disaster risks," The European Journal of Finance, Taylor & Francis Journals, vol. 25(2), pages 190-203, January.
    31. Cho, Jae-Beom & Min, Hong-Ghi & McDonald, Judith Ann, 2020. "Volatility and dynamic currency hedging," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 64(C).
    32. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized gold volatility: Is there a role of geopolitical risks?," Finance Research Letters, Elsevier, vol. 35(C).
    33. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    34. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    35. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    36. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    37. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    38. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    39. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    40. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2018. "Geopolitical risks and stock market dynamics of the BRICS," Economic Systems, Elsevier, vol. 42(2), pages 295-306.
    41. Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2017. "The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method," Empirical Economics, Springer, vol. 53(3), pages 879-889, November.
    42. Gkillas, Konstantinos & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility jumps: The role of geopolitical risks," Finance Research Letters, Elsevier, vol. 27(C), pages 247-258.
    43. Peijie Wang, 2020. "The Monetary Models," Springer Texts in Business and Economics, in: The Economics of Foreign Exchange and Global Finance, edition 3, chapter 8, pages 173-216, Springer.
    44. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    45. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    46. Bouoiyour, Jamal & Selmi, Refk & Hammoudeh, Shawkat & Wohar, Mark E., 2019. "What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats?," Energy Economics, Elsevier, vol. 84(C).
    47. Neely, Christopher J., 1999. "Target zones and conditional volatility: The role of realignments," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 177-192, April.
    48. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    49. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    50. Blomberg, S. Brock & Hess, Gregory D. & Orphanides, Athanasios, 2004. "The macroeconomic consequences of terrorism," Journal of Monetary Economics, Elsevier, vol. 51(5), pages 1007-1032, July.
    51. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    52. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    53. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    54. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    55. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    56. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    57. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    58. Kim, Hyun-Seok & Min, Hong-Ghi & McDonald, Judith A., 2016. "Returns, correlations, and volatilities in equity markets: Evidence from six OECD countries during the US financial crisis," Economic Modelling, Elsevier, vol. 59(C), pages 9-22.
    59. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    60. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    61. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    62. Nusair, Salah A. & Olson, Dennis, 2019. "The effects of oil price shocks on Asian exchange rates: Evidence from quantile regression analysis," Energy Economics, Elsevier, vol. 78(C), pages 44-63.
    63. Qin, Yun & Hong, Kairong & Chen, Jinyu & Zhang, Zitao, 2020. "Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions," Energy Economics, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farooq, Umar & Dar, Arif Billah, 2022. "Is there a Kuznets curve for forest product footprint? – empirical evidence from India," Forest Policy and Economics, Elsevier, vol. 144(C).
    2. Ni, Xiewen, 2023. "Natural resources and COP26 targets of developed countries: Pandemic perspective of natural resources extraction," Resources Policy, Elsevier, vol. 83(C).
    3. Djedaiet, Aissa & Ayad, Hicham & Ben-Salha, Ousama, 2024. "Oil prices and the load capacity factor in African oil-producing OPEC members: Modeling the symmetric and asymmetric effects," Resources Policy, Elsevier, vol. 89(C).
    4. Chen, Xia & Rahaman, Md Atikur & Murshed, Muntasir & Mahmood, Haider & Hossain, Md Afzal, 2023. "Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh," Energy, Elsevier, vol. 267(C).
    5. Hikma Bachegour & Ahlam Qafas, 2023. "Does External Debt Worsen Environmental Pollution? Evidence from Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 68-76, March.
    6. Giuseppe Craparo & Elisa Isabel Cano Montero & Jesús Fernando Santos Peñalver, 2024. "Trends in the circular economy applied to the agricultural sector in the framework of the SDGs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26699-26729, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "The role of time‐varying rare disaster risks in predicting bond returns and volatility," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 327-340, July.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    3. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2020. "Oil shocks and volatility jumps," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 247-272, January.
    4. Lee, Chi-Chuan & Lee, Chien-Chiang & Li, Yong-Yi, 2021. "Oil price shocks, geopolitical risks, and green bond market dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    5. Gkillas, Konstantinos & Gupta, Rangan & Wohar, Mark E., 2018. "Volatility jumps: The role of geopolitical risks," Finance Research Letters, Elsevier, vol. 27(C), pages 247-258.
    6. Qin, Yun & Hong, Kairong & Chen, Jinyu & Zhang, Zitao, 2020. "Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions," Energy Economics, Elsevier, vol. 90(C).
    7. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    9. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    10. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    11. Mo, Bin & Nie, He & Zhao, Rongjie, 2024. "Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods," Energy, Elsevier, vol. 288(C).
    12. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    13. Aysan, Ahmet Faruk & Polat, Ali Yavuz & Tekin, Hasan & Tunalı, Ahmet Semih, 2022. "The Ascent of Geopolitics: Scientometric Analysis and Ramifications of Geopolitical Risk," MPRA Paper 112741, University Library of Munich, Germany.
    14. Li, Sufang & Tu, Dalun & Zeng, Yan & Gong, Chenggang & Yuan, Di, 2022. "Does geopolitical risk matter in crude oil and stock markets? Evidence from disaggregated data," Energy Economics, Elsevier, vol. 113(C).
    15. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    16. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
    17. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    18. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    19. Li, Yingli & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic spillovers of geopolitical risks and gold prices: New evidence from 18 emerging economies," Resources Policy, Elsevier, vol. 70(C).
    20. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.

    More about this item

    Keywords

    EKC; carbon dioxide; ecological footprint; Tunisia;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.