IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2017-14.html
   My bibliography  Save this paper

Constrained QML Estimation for Multivariate Asymmetric MEM with Spillovers: The Practicality of Matrix Inequalities

Author

Listed:
  • Karanasos, Menelaos

    (Brunel University London)

  • Xu, Yongdeng

    (Cardiff Business School)

  • Yfanti, Stavroula

    (School of Business and Economics, Loughborough University)

Abstract

In this paper, we review and generalize results on the derivation of tractable non-negativity (necessary and sufficient) conditions for N-dimensional asymmetric MEM and GARCH/HEAVY models with spillovers. We show that the non-negativity constraints are translated into simple matrix inequalities, which are easily handled. In practice, these conditions may not be ful lled. To deal with these cases, we propose a constrained QML estimation. We also obtain new theoretical results about the second moment structure and the optimal forecasts of such multivariate processes. Four empirical examples are included to show the e ectiveness of the proposed method.

Suggested Citation

  • Karanasos, Menelaos & Xu, Yongdeng & Yfanti, Stavroula, 2017. "Constrained QML Estimation for Multivariate Asymmetric MEM with Spillovers: The Practicality of Matrix Inequalities," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
  • Handle: RePEc:cdf:wpaper:2017/14
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2017_14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013. "Semiparametric Vector Mem," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
    2. Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
    3. Conrad, Christian, 2010. "Non-negativity conditions for the hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
    4. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    5. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    8. Tsai, Henghsiu & Chan, Kung-Sik, 2008. "A Note On Inequality Constraints In The Garch Model," Econometric Theory, Cambridge University Press, vol. 24(3), pages 823-828, June.
    9. Rasmus S. Pedersen & Anders Rahbek, 2014. "Multivariate variance targeting in the BEKK–GARCH model," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
    10. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    11. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    12. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    14. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    15. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    16. Francq, Christian & Sucarrat, Genaro, 2017. "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 16-32.
    17. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    18. Cipollini, Fabrizio & Gallo, Giampiero M., 2010. "Automated variable selection in vector multiplicative error models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2470-2486, November.
    19. Henghsiu Tsai & K. S. Chan, 2007. "A Note on Non‐Negative Arma Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 350-360, May.
    20. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    21. Wang, Jianxin, 2007. "Foreign equity trading and emerging market volatility: Evidence from Indonesia and Thailand," Journal of Development Economics, Elsevier, vol. 84(2), pages 798-811, November.
    22. Claudio, Morana, 2015. "Semiparametric Estimation of Multivariate GARCH Models," Working Papers 317, University of Milano-Bicocca, Department of Economics, revised 10 Dec 2015.
    23. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    24. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    25. He, Changli & Teräsvirta, Timo, 2004. "An Extended Constant Conditional Correlation Garch Model And Its Fourth-Moment Structure," Econometric Theory, Cambridge University Press, vol. 20(5), pages 904-926, October.
    26. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    27. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(3), pages 838-862, June.
    28. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    29. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    30. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    31. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    32. Satchell, Stephen & Knight, John, 2007. "Forecasting Volatility in the Financial Markets," Elsevier Monographs, Elsevier, edition 3, number 9780750669429.
    33. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    34. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    35. Karanasos, M. & Kartsaklas, A., 2009. "Dual long-memory, structural breaks and the link between turnover and the range-based volatility," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 838-851, December.
    36. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    37. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    38. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    39. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    40. C. Gourieroux, 2007. "Positivity Conditions for a Bivariate Autoregressive Volatility Specification," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 624-636, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karanasos, Menelaos & Paraskevopoulos,Alexandros & Canepa, Alessandra, 2020. "Unified Theory for the Large Family of Time Varying Models with Arma Representations: One Solution Fits All," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202008, University of Turin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
    5. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(3), pages 838-862, June.
    6. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    8. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    9. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    10. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    11. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
    12. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    13. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
    14. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    15. Conrad, Christian & Weber, Enzo, 2013. "Measuring Persistence in Volatility Spillovers," Working Papers 0543, University of Heidelberg, Department of Economics.
    16. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    17. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    18. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    19. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    20. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    21. Haas Markus & Liu Ji-Chun, 2018. "A multivariate regime-switching GARCH model with an application to global stock market and real estate equity returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(3), pages 1-27, June.

    More about this item

    Keywords

    Constrained QML Estimation; GARCH; Matrix Inequalities; MEM; Multivariate Modelling; Second Moment Structure;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2017/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.