Large mixed-frequency VARs with a parsimonious time-varying parameter structure
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John G. Fernald & Charles I. Jones, 2014.
"The Future of US Economic Growth,"
American Economic Review, American Economic Association, vol. 104(5), pages 44-49, May.
- John G. Fernald & Charles I. Jones, 2014. "The Future of U.S. Economic Growth," NBER Working Papers 19830, National Bureau of Economic Research, Inc.
- John G. Fernald & Charles I. Jones, 2014. "The Future of U.S. Economic Growth," Working Paper Series 2014-2, Federal Reserve Bank of San Francisco.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Frank Schorfheide & Dongho Song, 2024.
"Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic,"
International Journal of Central Banking, International Journal of Central Banking, vol. 20(4), pages 275-320, October.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," Working Papers 20-26, Federal Reserve Bank of Philadelphia.
- Schorfheide, Frank & Song, Dongho, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," CEPR Discussion Papers 16760, C.E.P.R. Discussion Papers.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," PIER Working Paper Archive 20-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Frank Schorfheide & Dongho Song, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," NBER Working Papers 29535, National Bureau of Economic Research, Inc.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
- Jacopo Cimadomo & Antonello D'Agostino, 2016.
"Combining Time Variation and Mixed Frequencies: an Analysis of Government Spending Multipliers in Italy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1276-1290, November.
- D'Agostino, Antonello & Cimadomo, Jacopo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Paper Series 1856, European Central Bank.
- Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
- Pierre Guérin & Massimiliano Marcellino, 2013.
"Markov-Switching MIDAS Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
- Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013.
"Macroeconomic forecasting and structural change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & D'Agostino, Antonello & Gambetti, Luca, 2010. "Macroeconomic forecasting and structural change," Working Paper Series 1167, European Central Bank.
- D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
- Giannone, Domenico & D’Agostino, Antonello & Gambetti, Luca, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
- Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017.
"Tracking the Slowdown in Long-Run GDP Growth,"
The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
- Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2014. "Tracking the Slowdown in Long-Run GDP Growth," Discussion Papers 1604, Centre for Macroeconomics (CFM), revised Jan 2016.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2017. "Tracking the slowdown in long-run GDP growth," LSE Research Online Documents on Economics 81869, London School of Economics and Political Science, LSE Library.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2016. "Tracking the slowdown in long-run GDP growth," LSE Research Online Documents on Economics 86243, London School of Economics and Political Science, LSE Library.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2016. "Tracking the slowdown in long-run GDP growth," Bank of England working papers 587, Bank of England.
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- Peter A. Zadrozny, 1990. "Estimating A Multivariate Arma Model with Mixed-Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals," Working Papers 90-5, Center for Economic Studies, U.S. Census Bureau.
- Litterman, Robert B, 1986.
"Forecasting with Bayesian Vector Autoregressions-Five Years of Experience,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
- Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
- Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
- Michele Lenza & Giorgio E. Primiceri, 2020.
"How to Estimate a VAR after March 2020,"
NBER Working Papers
27771, National Bureau of Economic Research, Inc.
- Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
- Lenza, Michele & Primiceri, Giorgio E., 2020. "How to estimate a VAR after March 2020," Working Paper Series 2461, European Central Bank.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- Joshua C. C. Chan, 2020.
"Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
- Joshua C.C. Chan, 2015. "Large Bayesian VARs: A flexible Kronecker error covariance structure," CAMA Working Papers 2015-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
- Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
- Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
- Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023.
"High-dimensional conditionally Gaussian state space models with missing data,"
Journal of Econometrics, Elsevier, vol. 236(1).
- Joshua C. C. Chan & Aubrey Poon & Dan Zhu, 2023. "High-Dimensional Conditionally Gaussian State Space Models with Missing Data," Papers 2302.03172, arXiv.org.
- Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Large Vector Autoregressions with Asymmetric Priors,"
Working Papers
759, Queen Mary University of London, School of Economics and Finance.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020.
"A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior,"
Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Sebastian Ankargren & M{aa}ns Unosson & Yukai Yang, 2019. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Papers 1911.09151, arXiv.org.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023.
"Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
- Jonas E. Arias & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic Volatility Models," Working Papers 21-21, Federal Reserve Bank of Philadelphia.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
More about this item
Keywords
Bayesian methods; time-varying intercepts; common stochastic volatility; forecasting; real-time data; COVID-19 case study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:24:y:2021:i:3:p:442-461.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.