IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v13y2009i3n1.html
   My bibliography  Save this article

Asymmetry in Stochastic Volatility Models: Threshold or Correlation?

Author

Listed:
  • Smith Daniel R

    (Simon Fraser University)

Abstract

We compare the ability of correlation and threshold effects in a stochastic volatility model to capture the asymmetric relationship between stock returns and volatility. The parameters are estimated using maximum likelihood based on the extended Kalman filter and uses numerical integration over the latent volatility process. The stochastic volatility model with only correlation does a better job of capturing asymmetry than a threshold stochastic volatility model even though it has fewer parameters. We develop a stochastic volatility model that includes both threshold effects and correlated innovations. We find that the general model with both threshold effects and correlated innovations dominates purely threshold and correlated models. In this augmented model volatility and returns are negatively correlated, and volatility is more persistent, less volatile and higher following negative returns even after counting for the negative correlation.

Suggested Citation

  • Smith Daniel R, 2009. "Asymmetry in Stochastic Volatility Models: Threshold or Correlation?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-36, May.
  • Handle: RePEc:bpj:sndecm:v:13:y:2009:i:3:n:1
    DOI: 10.2202/1558-3708.1540
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1540
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    5. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-291, July.
    6. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    7. Chen, Yi-Ting, 2007. "Moment-Based Copula Tests for Financial Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 377-397, October.
    8. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    9. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    10. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    11. Smith, Daniel R, 2002. "Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 183-197, April.
    12. Clifford A. Ball & Walter N. Torous, 1999. "The Stochastic Volatility of Short‐Term Interest Rates: Some International Evidence," Journal of Finance, American Finance Association, vol. 54(6), pages 2339-2359, December.
    13. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    16. Robert Breunig & Serinah Najarian & Adrian Pagan, 2003. "Specification Testing of Markov Switching Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 703-725, December.
    17. Sun, Licheng, 2005. "Regime shifts in interest rate volatility," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 418-434, June.
    18. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    19. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    20. Renate Meyer & Jun Yu, 2000. "BUGS for a Bayesian analysis of stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 198-215.
    21. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    22. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    23. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    24. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    25. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    26. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 267-284, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cte:wsrepe:ws131110 is not listed on IDEAS
    2. Montero, José M. & García-Centeno, Maria C. & Fernández-Avilés, Gema, 2011. "Modelling the Volatility of the Spanish Wholesale Electricity Spot Market. Asymmetric GARCH Models vs. Threshold ARSV model/Modelización de la volatilidad en el mercado eléctrico español. Modelos GARC," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 597-616, Agosto.
    3. Listorti, Giulia & Esposti, Roberto, 2012. "Horizontal Price Transmission in Agricultural Markets: Fundamental Concepts and Open Empirical Issues," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-28, April.
    4. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    5. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    6. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    2. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    3. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    4. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    6. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    7. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    8. repec:cte:wsrepe:ws131110 is not listed on IDEAS
    9. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    12. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    14. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    15. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    16. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    17. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    18. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    19. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    20. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    21. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:13:y:2009:i:3:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.