IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2021-32.html
   My bibliography  Save this paper

UK inflation forecasts since the thirteenth century

Author

Listed:
  • James M. Nason
  • Gregor W. Smith

Abstract

Historians have suggested there were waves of inflation or price revolutions in the UK (and earlier England) in the 13th, 16th, and 18th centuries, prior to the ongoing inflation since 1914. We study retail price inflation since 1251 and model its forecasts. The model is an AR(n) but allows for gradually evolving or drifting parameters and stochastic volatility. The long-horizon forecasts suggest only one inflation wave, that of the 20th century. We also use the model to measure inflation predictability and price-level instability from the beginning of the sample and to provide measures of real interest rates since 1695.

Suggested Citation

  • James M. Nason & Gregor W. Smith, 2021. "UK inflation forecasts since the thirteenth century," CAMA Working Papers 2021-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2021-32
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2021-03/32_2021_nason_smith.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cogley, Timothy & Sargent, Thomas J. & Surico, Paolo, 2015. "Price-level uncertainty and instability in the United Kingdom," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 1-16.
    2. Claudio Borio & Piti Disyatat & Mikael Juselius & Phurichai Rungcharoenkitkul, 2022. "Why So Low for So Long? A Long-Term View of Real Interest Rates," International Journal of Central Banking, International Journal of Central Banking, vol. 18(3), pages 47-87, September.
    3. Kurt G. Lunsford & Kenneth D. West, 2019. "Some Evidence on Secular Drivers of US Safe Real Rates," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(4), pages 113-139, October.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Mavis Mate, 1975. "High Prices in Early Fourteenth-Century England: Causes and Consequences'," Economic History Review, Economic History Society, vol. 28(1), pages 1-16, February.
    6. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    7. Feinstein, Charles H., 1998. "Pessimism Perpetuated: Real Wages and the Standard of Living in Britain during and after the Industrial Revolution," The Journal of Economic History, Cambridge University Press, vol. 58(3), pages 625-658, September.
    8. Foreman-Peck,James (ed.), 1991. "New Perspectives on the Late Victorian Economy," Cambridge Books, Cambridge University Press, number 9780521391078, January.
    9. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    10. repec:zbw:bofrdp:2017_036 is not listed on IDEAS
    11. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
    12. Timothy Cogley & Thomas J. Sargent, 2015. "Measuring Price-Level Uncertainty and Instability in the United States, 1850–2012," The Review of Economics and Statistics, MIT Press, vol. 97(4), pages 827-838, October.
    13. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    14. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    15. Howson, Susan, 1973. ""A Dear Money Man"?: Keynes on Monetary Policy, 1920," Economic Journal, Royal Economic Society, vol. 83(330), pages 456-464, June.
    16. Allen, Robert C., 2001. "The Great Divergence in European Wages and Prices from the Middle Ages to the First World War," Explorations in Economic History, Elsevier, vol. 38(4), pages 411-447, October.
    17. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    18. Jacobs,Donald P. & Kalai,Ehud & Kamien,Morton I. & Schwartz,Nancy L. (ed.), 1998. "Frontiers of Research in Economic Theory," Cambridge Books, Cambridge University Press, number 9780521635387, January.
    19. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    20. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    21. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    22. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    2. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    3. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    4. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    5. repec:wrk:wrkemf:13 is not listed on IDEAS
    6. James H. Stock & Mark W. Watson, 2019. "Trend, Seasonal, and Sectoral Inflation in the Euro Area," Working Papers 2019-30, Princeton University. Economics Department..
    7. Christophe Andre & David Gabauer & Rangan Gupta, 2020. "Time-Varying Spillovers between Housing Sentiment and Housing Market in the United States," Working Papers 202091, University of Pretoria, Department of Economics.
    8. James M. Nason & Gregor W. Smith, 2023. "Uk Inflation Dynamics Since The Thirteenth Century," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1595-1614, November.
    9. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    10. Franz Xaver Zobl & Martin Ertl, 2021. "The Condemned Live Longer – New Evidence of the New Keynesian Phillips Curve in Central and Eastern Europe," Open Economies Review, Springer, vol. 32(4), pages 671-699, September.
    11. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    12. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    13. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    14. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    15. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    16. Lukmanova, Elizaveta & Rabitsch, Katrin, 2023. "Evidence on monetary transmission and the role of imperfect information: Interest rate versus inflation target shocks," European Economic Review, Elsevier, vol. 158(C).
    17. Takushi Kurozumi & Willem Van Zandweghe, 2023. "A Theory of Intrinsic Inflation Persistence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(8), pages 1961-2000, December.
    18. Pär Österholm & Aubrey Poon, 2023. "Trend Inflation in Sweden," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 4707-4716, October.
    19. Siklos, Pierre L., 2021. "The macroeconomic response to real and financial factors, commodity prices, and monetary policy: International evidence," Economic Systems, Elsevier, vol. 45(1).
    20. James H. Stock & Mark W. Watson, 2020. "Trend, Seasonal, and Sectorial Inflation in the Euro Area," Central Banking, Analysis, and Economic Policies Book Series, in: Gonzalo Castex & Jordi Galí & Diego Saravia (ed.),Changing Inflation Dynamics,Evolving Monetary Policy, edition 1, volume 27, chapter 9, pages 317-344, Central Bank of Chile.
    21. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).

    More about this item

    Keywords

    inflation; price revolutions; stochastic volatility; time-varying parameters;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2021-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.