IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/327.html
   My bibliography  Save this paper

Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics

Author

Listed:

Abstract

In this paper we consider the evaluation of American call options on dividend paying stocks in the case where the underlying asset price evolves according to Heston’s (1993) stochastic volatility model. We solve the Kolmogorov partial differential equation associated with the driving stochastic processes using a combination of Fourier and Laplace transforms and so obtain the joint transition probability density function for the underlying processes. We then use Duhamel’s principle to obtain the expression for the American option price, which depends upon the unknown early exercise surface. By evaluating the pricing equation along the free surface boundary, we obtain the corresponding integral equation for the early exercise surface. An algorithm is proposed for solving the integral equation system, based upon numerical integration techniques for Volterra integral equations. The method is used to explore the impact of stochastic volatility on the price and free boundary of American call options.

Suggested Citation

  • Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:327
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp327.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    3. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    5. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    6. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(4), pages 519-529, December.
    7. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    8. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, Springer, vol. 7(3), pages 361-383.
    9. Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary University of London, School of Economics and Finance.
    10. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    11. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, European Finance Association, vol. 7(3), pages 361-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    2. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.
    4. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    5. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2024. "Method of Lines for Valuation and Sensitivities of Bermudan Options," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 245-270, January.
    6. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    7. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
    8. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Carl Chiarella & Boda Kang, 2009. "The Evaluation of American Compound Option Prices Under Stochastic Volatility Using the Sparse Grid Approach," Research Paper Series 245, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2021. "Method of lines for valuation and sensitivities of Bermudan options," Papers 2112.01287, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    2. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    3. Carl Chiarella & Jonathan Ziveyi, 2011. "Two Stochastic Volatility Processes - American Option Pricing," Research Paper Series 292, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    8. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    10. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    11. Naoto Kunitomo & Yong-Jin Kim, 2001. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims (Revised Version)," CIRJE F-Series CIRJE-F-129, CIRJE, Faculty of Economics, University of Tokyo.
    12. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    13. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    14. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    15. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    16. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    18. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    19. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    20. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.

    More about this item

    Keywords

    American options; stochastic volatility; Volterra integral equations; free boundary problem;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.