A simple model for now-casting volatility series
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2016.04.007
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Breitung, J. & Hafner, C., 2016. "A simple model for now-casting volatility series," LIDAM Discussion Papers ISBA 2016035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Breitung, Jorg & Hafner, Christian, 2016. "A simple model for now-casting volatility series," LIDAM Reprints ISBA 2016040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jörg BREITUNG & Christian M. HAFNER, 2016. "A simple model for now-casting volatility series," LIDAM Reprints CORE 2865, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BREITUNG, Jörg & HAFNER, Christian, 2016. "A Simple Model for Now-Casting Volatility Series," LIDAM Discussion Papers CORE 2016004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Breitung, J. & Hafner, C., 2014. "A simple model for now-casting volatility series," LIDAM Discussion Papers ISBA 2014046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Breitung, Jorg & Hafner, Christian, 2015. "A simple model for now-casting volatility series," LIDAM Discussion Papers ISBA 2015021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, Christian & Breitung, Jörg, 2014. "A simple model for now-casting volatility series," LIDAM Discussion Papers CORE 2014060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
References listed on IDEAS
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- J. Durbin & S. J. Koopman, 2000.
"Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
- Andrew Harvey & Siem Jan Koopman, 2000.
"Signal extraction and the formulation of unobserved components models,"
Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
- Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Discussion Paper 1999-44, Tilburg University, Center for Economic Research.
- Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Other publications TiSEM 44688527-92c9-4c46-ac53-f, Tilburg University, School of Economics and Management.
- Tommaso Proietti, 2006. "Trend-Cycle Decompositions with Correlated Components," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 61-84.
- Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
- James C. Morley & Charles R. Nelson & Eric Zivot, 2003.
"Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?,"
The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
- Charles Nelson & Eric Zivot, 2000. "Why are Beveridge-Nelson and Unobserved-Component Decompositions of GDP so Different?," Econometric Society World Congress 2000 Contributed Papers 0692, Econometric Society.
- James Morley & Charles Nelson & Eric Zivot, 2002. "Why Are Beveridge-Nelson and Unobserved-Component Decompositions of GDP So Different?," Working Papers UWEC-2002-01, University of Washington, Department of Economics.
- James C. Morley & Charles Nelson & Eric Zivot, 2000. "Why Are Beveridge-Nelson and Unobserved-Component Decompositions of GDP So Different?," Working Papers 0013, University of Washington, Department of Economics.
- James C. Morley & Charles Nelson & Eric Zivot, 2000. "Why Are Beveridge-Nelson and Unobserved-Component Decompositions of GDP So Different?," Discussion Papers in Economics at the University of Washington 0013, Department of Economics at the University of Washington.
- James Morley & Charles Nelson & Eric Zivot, 2003. "Why are Beveridge-Nelson and Unobserved-component decompositions of GDP so Different?," Working Papers UWEC-2002-18-P, University of Washington, Department of Economics.
- Christian Francq & Jean‐Michel Zakoïan, 2006. "Linear‐representation Based Estimation of Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 785-806, December.
- Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
- Dimitris N. Politis, 0. "Model-free versus Model-based Volatility Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 358-359.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
- Kejin Wu & Sayar Karmakar, 2023. "A model-free approach to do long-term volatility forecasting and its variants," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
- Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
- Ding, Y., 2021. "Augmented Real-Time GARCH: A Joint Model for Returns, Volatility and Volatility of Volatility," Cambridge Working Papers in Economics 2112, Faculty of Economics, University of Cambridge.
- Kelvin Mutum, 2020. "Volatility Forecast Incorporating Investors’ Sentiment and its Application in Options Trading Strategies: A Behavioural Finance Approach at Nifty 50 Index," Vision, , vol. 24(2), pages 217-227, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016.
"Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
- Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2013. "Estimation and Inference in Univariate and Multivariate Log-GARCH-X Models When the Conditional Density is Unknown," MPRA Paper 49344, University Library of Munich, Germany.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
- Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
- Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012.
"Modelling and forecasting noisy realized volatility,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Modelling and Forecasting Noisy Realized Volatility," CIRJE F-Series CIRJE-F-669, CIRJE, Faculty of Economics, University of Tokyo.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," Documentos de Trabajo del ICAE 2011-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, M. & McAleer, M.J. & Medeiros, M., 2011. "Modelling and Forecasting Noisy Realized Volatility," Econometric Institute Research Papers EI 2011-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manuabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Modelling and Forecasting Noisy Realized Volatility," Working Papers in Economics 10/21, University of Canterbury, Department of Economics and Finance.
- M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
- Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
- Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
- Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
- Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
- M. Hakan Eratalay, 2016.
"Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study,"
International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
- Mustafa Hakan Eratalay, 2012. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," EUSP Department of Economics Working Paper Series 2012/04, European University at St. Petersburg, Department of Economics.
- Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
- Paolo Girardello & Orietta Nicolis & Giovanni Tondini, 2003. "Comparing Conditional Variance Models: Theory and Empirical Evidence," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 177-206, September.
- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
More about this item
Keywords
EGARCH; Stochastic volatility; ARMA; Realized volatility; Leverage;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:32:y:2016:i:4:p:1247-1255. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.