IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v22y2024i4p954-1005..html
   My bibliography  Save this article

Effect of the U.S.–China Trade War on Stock Markets: A Financial Contagion Perspective

Author

Listed:
  • Minseog Oh
  • Donggyu Kim

Abstract

In this article, to model risk contagion between the U.S. and China stock markets based on high-frequency financial data, we develop a novel continuous-time jump-diffusion process. For example, we consider three channels for volatility contagion—such as integrated volatility, positive jump variation, and negative jump variation—and each stock market is able to affect the other stock market as an overnight risk factor. We develop a quasi-maximum likelihood estimator for model parameters and establish its asymptotic properties. Furthermore, to identify contagion channels and test the existence of a structural break with a known structural break date, we propose hypothesis test procedures. Using the proposed diffusion model with high-frequency financial data, we investigate the effect of the U.S.–China trade war on stock markets from a financial contagion perspective. From the empirical study, we find evidence of financial contagion from the United States to China and evidence that the risk contagion channel has changed from integrated volatility to negative jump variation.

Suggested Citation

  • Minseog Oh & Donggyu Kim, 2024. "Effect of the U.S.–China Trade War on Stock Markets: A Financial Contagion Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 22(4), pages 954-1005.
  • Handle: RePEc:oup:jfinec:v:22:y:2024:i:4:p:954-1005.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbad016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    4. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    5. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    6. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    7. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    9. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    10. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    11. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    12. Mary Amiti & Sang Hoon Kong & David Weinstein, 2020. "The Effect of the U.S.-China Trade War on U.S. Investment," NBER Working Papers 27114, National Bureau of Economic Research, Inc.
    13. repec:hal:journl:peer-00741630 is not listed on IDEAS
    14. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    15. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    16. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    17. Tao, Minjing & Wang, Yazhen & Chen, Xiaohong, 2013. "Fast Convergence Rates In Estimating Large Volatility Matrices Using High-Frequency Financial Data," Econometric Theory, Cambridge University Press, vol. 29(4), pages 838-856, August.
    18. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    19. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    20. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    21. Mary Amiti & Stephen J. Redding & David E. Weinstein, 2019. "The Impact of the 2018 Tariffs on Prices and Welfare," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 187-210, Fall.
    22. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    23. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    24. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    25. Lin, Wen-Ling & Engle, Robert F & Ito, Takatoshi, 1994. "Do Bulls and Bears Move across Borders? International Transmission of Stock Returns and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(3), pages 507-538.
    26. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    27. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    28. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    29. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    30. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
    31. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    32. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    33. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    34. Pablo D Fajgelbaum & Pinelopi K Goldberg & Patrick J Kennedy & Amit K Khandelwal, 2020. "The Return to Protectionism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(1), pages 1-55.
    35. Jianqing Fan & Donggyu Kim, 2018. "Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1268-1283, July.
    36. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
    37. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    2. Donggyu Kim, 2021. "Exponential GARCH-Ito Volatility Models," Papers 2111.04267, arXiv.org.
    3. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    4. Dohyun Chun & Donggyu Kim, 2022. "State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
    5. Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022. "Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    7. Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
    8. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    9. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    10. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    11. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
    12. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    13. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    14. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    15. Donggyu Kim, 2016. "Statistical Inference for Unified Garch–Itô Models with High-Frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 513-532, July.
    16. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    17. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    18. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    19. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    20. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.

    More about this item

    Keywords

    high-frequency financial data; jump diffusion process; realized volatility; structural break;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:22:y:2024:i:4:p:954-1005.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.