Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2018.11.057
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
- A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999.
"Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance,"
The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
- Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
- Leippold, Markus & Wu, Liuren, 2002.
"Asset Pricing under the Quadratic Class,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 271-295, June.
- Markus Leippold & Liuren Wu, 2002. "Asset Pricing Under The Quadratic Class," Finance 0207015, University Library of Munich, Germany.
- Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
- Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009.
"The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well,"
Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well," CREATES Research Papers 2009-34, Department of Economics and Business Economics, Aarhus University.
- John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005.
"A Theory Of The Term Structure Of Interest Rates,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164,
World Scientific Publishing Co. Pte. Ltd..
- Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
- Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
- Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
- Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 2000.
"Transform Analysis and Asset Pricing for Affine Jump-Diffusions,"
Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
- Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
- Farshid Jamshidian, 1996. "Bond, futures and option evaluation in the quadratic interest rate model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(2), pages 93-115.
- Zani, Marguerite, 2002. "Large deviations for squared radial Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 25-42, November.
- Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
- Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
- K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
- Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
- Markus Leippold & Liuren Wu, 2003.
"Design and Estimation of Quadratic Term Structure Models,"
Review of Finance, European Finance Association, vol. 7(1), pages 47-73.
- Markus Leippold & Liuren Wu, 2002. "Design and Estimation of Quadratic Term Structure Models," Finance 0207014, University Library of Munich, Germany.
- Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
- Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
- Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
- Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
- Peng Cheng & Olivier Scaillet, 2007. "Linear‐Quadratic Jump‐Diffusion Modeling," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 575-598, October.
- Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
- Li Chen & H. Vincent Poor, 2003. "Markovian Quadratic Term Structure Models For Risk-free And Defaultable Rates," Finance 0303008, University Library of Munich, Germany.
- Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
- Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
- Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
- Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
- Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
- Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
- Lionel Sopgoui, 2024. "Modeling the impact of Climate transition on real estate prices," Papers 2408.02339, arXiv.org.
- Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
- Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
- Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
- Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
- Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
- de la Cruz, H. & Jimenez, J. C, 2020. "Exact pathwise simulation of multi-dimensional Ornstein–Uhlenbeck processes," Applied Mathematics and Computation, Elsevier, vol. 366(C).
- Weinan Zhang & Pingping Zeng, 2023. "A transform-based method for pricing Asian options under general two-dimensional models," Quantitative Finance, Taylor & Francis Journals, vol. 23(11), pages 1677-1697, November.
- Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.
- Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
- Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
- Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
- Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
- Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
- Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
- Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
- Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
- Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
- Peng Cheng & Olivier Scaillet, 2002.
"Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility,"
FAME Research Paper Series
rp67, International Center for Financial Asset Management and Engineering.
- Olivier Scaillet., 2003. "Linear-Quadratic Jump-Diffusion Modelling with Application to Stochastic Volatility," THEMA Working Papers 2003-29, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006.
"A class of nonlinear stochastic volatility models and its implications for pricing currency options,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
- Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
- Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
- Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
- Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
- Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
- Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
- Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
More about this item
Keywords
Simulation; Stochastic volatility; Ornstein–Uhlenbeck process; Laplace transform; Analytical extension;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:2:p:768-779. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.