IDEAS home Printed from https://ideas.repec.org/p/nbb/reswpp/201409-263.html
   My bibliography  Save this paper

On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers

Author

Listed:
  • Arnaud Dufays

    (École Nationale de la Statistique et de l'Administration Économique, CREST)

Abstract

Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain Monte-Carlo (MCMC) methods. Not only SMC algorithms draw posterior distributions of static or dynamic parameters but additionally provide an estimate of the normalizing constant. The tempered and time (TNT) algorithm, developed in the paper, combines (off-line) tempered SMC inference with on-line SMC inference for estimating many slightly different distributions. The method encompasses the Iterated Batch Importance Sampling (IBIS) algorithm and more generally the Resample Move (RM) algorithm. Besides the number of particles, the TNT algorithm self-adjusts its calibrated parameters and relies on a new MCMC kernel that allows for particle interactions. The algorithm is well suited for efficiently back-testing models. We conclude by comparing in-sample and out-of-sample performances of complex volatility models.

Suggested Citation

  • Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
  • Handle: RePEc:nbb:reswpp:201409-263
    as

    Download full text from publisher

    File URL: https://www.nbb.be/doc/ts/publications/wp/wp263en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    4. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    5. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    6. BAUWENS, Luc & DUFAYS, Arnaud & DE BACKER, Bruno, 2011. "Estimating and forecasting structural breaks in financial time series," LIDAM Discussion Papers CORE 2011055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    8. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    11. Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006. "Volatility comovement: a multifrequency approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
    12. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
    13. repec:dau:papers:123456789/7305 is not listed on IDEAS
    14. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    15. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    16. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    2. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    3. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    6. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    7. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    8. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    9. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    10. Lau, F. Din-Houn & Gandy, Axel, 2014. "RMCMC: A system for updating Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 99-110.
    11. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    12. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    13. AUGUSTYNIAK, Maciej & BAUWENS, Luc & DUFAYS, Arnaud, 2016. "A New Approach to Volatility Modeling : The High-Dimensional Markov Model," LIDAM Discussion Papers CORE 2016042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
    15. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    16. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    17. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    18. Liu, Yufang & Zhang, Weiguo & Fu, Junhui, 2016. "Binomial Markov-Switching Multifractal model with Skewed t innovations and applications to Chinese SSEC Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 56-66.
    19. Li, Dan & Clements, Adam & Drovandi, Christopher, 2021. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 22-46.
    20. Patrick Aschermayr & Konstantinos Kalogeropoulos, 2023. "Sequential Bayesian Learning for Hidden Semi-Markov Models," Papers 2301.10494, arXiv.org.

    More about this item

    Keywords

    Bayesian inference; Sequential Monte Carlo; Annealed Importance sampling; Differential Evolution; Volatility models; Multifractal model; Markov-switching model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbb:reswpp:201409-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bnbgvbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.