IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i6p55-d561451.html
   My bibliography  Save this article

Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review

Author

Listed:
  • Giuseppe Ciaburro

    (Department of Architecture and Industrial Design, Università degli Studi della Campania, Luigi Vanvitelli, Borgo San Lorenzo, 81031 Aversa, Italy)

  • Gino Iannace

    (Department of Architecture and Industrial Design, Università degli Studi della Campania, Luigi Vanvitelli, Borgo San Lorenzo, 81031 Aversa, Italy)

Abstract

To predict the future behavior of a system, we can exploit the information collected in the past, trying to identify recurring structures in what happened to predict what could happen, if the same structures repeat themselves in the future as well. A time series represents a time sequence of numerical values observed in the past at a measurable variable. The values are sampled at equidistant time intervals, according to an appropriate granular frequency, such as the day, week, or month, and measured according to physical units of measurement. In machine learning-based algorithms, the information underlying the knowledge is extracted from the data themselves, which are explored and analyzed in search of recurring patterns or to discover hidden causal associations or relationships. The prediction model extracts knowledge through an inductive process: the input is the data and, possibly, a first example of the expected output, the machine will then learn the algorithm to follow to obtain the same result. This paper reviews the most recent work that has used machine learning-based techniques to extract knowledge from time series data.

Suggested Citation

  • Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:6:p:55-:d:561451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/6/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/6/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Velasco, 1999. "Gaussian Semiparametric Estimation of Non‐stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 87-127, January.
    2. Chen, Tianyi & Shi, Xiupeng & Wong, Yiik Diew, 2021. "A lane-changing risk profile analysis method based on time-series clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    4. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    5. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    6. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    7. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    8. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    9. Tamal Datta Chaudhuri & Indranil Ghosh, 2016. "Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework," Papers 1607.02093, arXiv.org.
    10. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    11. Chen, Tianbo & Sun, Ying & Li, Ta-Hsin, 2021. "A semi-parametric estimation method for the quantile spectrum with an application to earthquake classification using convolutional neural network," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    12. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    13. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    14. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    15. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    16. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    17. Steinmann, Patrick & Auping, Willem L. & Kwakkel, Jan H., 2020. "Behavior-based scenario discovery using time series clustering," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    18. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    19. Hylleberg, S. (ed.), 1992. "Modelling Seasonality," OUP Catalogue, Oxford University Press, number 9780198773184.
    20. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    21. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    22. Marek Vochozka & Jakub Horák & Petr Šuleř, 2019. "Equalizing Seasonal Time Series Using Artificial Neural Networks in Predicting the Euro–Yuan Exchange Rate," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    23. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    24. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    25. Ian C McDowell & Dinesh Manandhar & Christopher M Vockley & Amy K Schmid & Timothy E Reddy & Barbara E Engelhardt, 2018. "Clustering gene expression time series data using an infinite Gaussian process mixture model," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-27, January.
    26. Doucoure, Boubacar & Agbossou, Kodjo & Cardenas, Alben, 2016. "Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data," Renewable Energy, Elsevier, vol. 92(C), pages 202-211.
    27. Edoardo Otranto & Alessandro Trudda, 2008. "Classifying Italian Pension Funds via GARCH Distance," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 189-197, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor V. Ilin & Oksana Yu. Iliashenko & Egor M. Schenikov, 2023. "An Approach to Forecasting the Structure of Energy Generation in the Age of Energy Transition Based on the Automated Determination of Factor Significance," Energies, MDPI, vol. 17(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
    3. Cribari-Neto, Francisco, 1996. "On time series econometrics," The Quarterly Review of Economics and Finance, Elsevier, vol. 36(Supplemen), pages 37-60.
    4. Fredy Vásquez Bedoya & Sergio Iván Restrepo Ochoa & Mauricio Lopera Castaño & María Isabel Restrepo Estrada, 2014. "Los ciclos económicos departamentales en Colombia, 1960-2011," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 16(30), pages 271-295, January-J.
    5. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, August.
    6. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    7. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    8. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    9. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    10. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    11. Martha Misas & Enrique López, 1999. "El producto potencial en Colombia: una estimación bajo var estructural," Coyuntura Económica, Fedesarrollo, September.
    12. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    13. J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
    14. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    15. Philipp Adämmer & Martin T. Bohl, 2018. "Price discovery dynamics in European agricultural markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 549-562, May.
    16. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
    17. Guido Bulligan & Lorenzo Burlon & Davide Delle Monache & Andrea Silvestrini, 2019. "Real and financial cycles: estimates using unobserved component models for the Italian economy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 541-569, September.
    18. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
    19. Yasir Riaz & Choudhry T. Shehzad & Zaghum Umar, 2021. "The sovereign yield curve and credit ratings in GIIPS," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 895-916, September.
    20. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    21. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:6:p:55-:d:561451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.