IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20130047.html
   My bibliography  Save this paper

GARCH Models for Daily Stock Returns: Impact of Estimation Frequency on Value-at-Risk and Expected Shortfall Forecasts

Author

Listed:
  • David Ardia

    (Universite Laval, Quebec, Canada)

  • Lennart Hoogerheide

    (VU University Amsterdam)

Abstract

This discussion paper led to a publication in 'Economics Letters' , 2014, 123(2), 187-190. We analyze the impact of the estimation frequency - updating parameter estimates on a daily, weekly, monthly or quarterly basis - for commonly used GARCH models in a large-scale study, using more than twelve years (2000-2012) of daily returns for constituents of the S&P 500 index. We assess the implication for one-day ahead 95% and 99% Value-at-Risk (VaR) forecasts with the test for correct conditional coverage of Christoffersen (1998) and for Expected Shortfall (ES) forecasts with the block-bootstrap test of ES violations of Jalal and Rockinger (2008). Using the false discovery rate methodology of Storey (2002) to estimate the percentage of stocks for which the model yields correct VaR and ES forecasts, we reach the following conclusions. First, updating the parameter estimates of the GARCH equation on a daily frequency improves only marginally the performance of the model, compared with weekly, monthly or even quarterly updates. The 90% confidence bands overlap, reflecting that the performance is not significantly different. Second, the asymmetric GARCH model with non-parametric kernel density estimate performs well; it yields correct VaR and ES forecasts for an estimated 90% to 95% of the S&P 500 constituents. Third, specifying a Student- t (or Gaussian) innovations' density yields substantially and significantly worse forecasts, especially for ES. In sum, the somewhat more advanced model with infrequently updated parameter estimates yields much better VaR and ES forecasts than simpler models with daily updated parameter estimates.

Suggested Citation

  • David Ardia & Lennart Hoogerheide, 2013. "GARCH Models for Daily Stock Returns: Impact of Estimation Frequency on Value-at-Risk and Expected Shortfall Forecasts," Tinbergen Institute Discussion Papers 13-047/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20130047
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/13047.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    2. Andrew Patton & Allan Timmermann, 2012. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    5. Lesmond, David A & Ogden, Joseph P & Trzcinka, Charles A, 1999. "A New Estimate of Transaction Costs," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1113-1141.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
    9. Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2012. "A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 101-120.
    10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    11. David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, October.
    12. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    13. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    16. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    17. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    18. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    19. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    20. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    21. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    22. Hoogerheide, Lennart F. & Ardia, David & Corré, Nienke, 2012. "Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?," Economics Letters, Elsevier, vol. 116(3), pages 322-325.
    23. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    24. Shao, Qi-Man & Yu, Hao, 1993. "Bootstrapping the sample means for stationary mixing sequences," Stochastic Processes and their Applications, Elsevier, vol. 48(1), pages 175-190, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Oscar V. De la Torre-Torres & José Álvarez-García & María de la Cruz del Río-Rama, 2024. "An EM/MCMC Markov-Switching GARCH Behavioral Algorithm for Random-Length Lumber Futures Trading," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    3. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    4. Lin, Saiyan & Chen, Rongda & Lv, Zhihong & Zhou, Tianqing & Jin, Chenglu, 2019. "Integrated measurement of liquidity risk and market risk of company bonds based on the optimal Copula model," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    5. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    6. Timmy Elenjical & Patrick Mwangi & Barry Panulo & Chun-Sung Huang, 2016. "A comparative cross-regime analysis on the performance of GARCH-based value-at-risk models: Evidence from the Johannesburg stock exchange," Risk Management, Palgrave Macmillan, vol. 18(2), pages 89-110, August.
    7. Jakub Micha'nk'ow & {L}ukasz Kwiatkowski & Janusz Morajda, 2023. "Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting," Papers 2310.01063, arXiv.org.
    8. Liu, Wei & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models," Research in International Business and Finance, Elsevier, vol. 54(C).
    9. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    10. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    11. Iglesias, Emma M., 2015. "Value at Risk and expected shortfall of firms in the main European Union stock market indexes: A detailed analysis by economic sectors and geographical situation," Economic Modelling, Elsevier, vol. 50(C), pages 1-8.
    12. Oscar V. De la Torre-Torres & Francisco Venegas-Martínez & Mᵃ Isabel Martínez-Torre-Enciso, 2021. "Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    13. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
    14. Oscar V. De la Torre-Torres & Dora Aguilasocho-Montoya & María de la Cruz del Río-Rama, 2020. "A Two-Regime Markov-Switching GARCH Active Trading Algorithm for Coffee, Cocoa, and Sugar Futures," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    15. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    16. Olofsson, Petter & Råholm, Anna & Uddin, Gazi Salah & Troster, Victor & Kang, Sang Hoon, 2021. "Ethical and unethical investments under extreme market conditions," International Review of Financial Analysis, Elsevier, vol. 78(C).
    17. Krämer, Walter & Wied, Dominik, 2015. "A simple and focused backtest of value at risk," Economics Letters, Elsevier, vol. 137(C), pages 29-31.
    18. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen & Skander Slim, 2018. "Value‐at‐risk under market shifts through highly flexible models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 790-804, December.
    19. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Lukasz Gatarek & Lennart Hoogerheide & Koen Hooning & Herman K. van Dijk, 2013. "Censored Posterior and Predictive Likelihood in Left-Tail Prediction for Accurate Value at Risk Estimation," Tinbergen Institute Discussion Papers 13-060/III, Tinbergen Institute, revised 06 Mar 2014.
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Hoogerheide, Lennart F. & Ardia, David & Corré, Nienke, 2012. "Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?," Economics Letters, Elsevier, vol. 116(3), pages 322-325.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    7. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    8. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    9. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    10. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. David Ardia & Lukasz Gatarek & Lennart F. hoogerheide, 2014. "A New Bootstrap Test for the Validity of a Set of Marginal Models for Multiple Dependent Time Series: an Application to Risk Analysis," Cahiers de recherche 1413, CIRPEE.
    15. Lennart F. Hoogerheide & David Ardia & Nienke Corre, 2011. "Stock Index Returns' Density Prediction using GARCH Models: Frequentist or Bayesian Estimation?," Tinbergen Institute Discussion Papers 11-020/4, Tinbergen Institute.
    16. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    18. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    19. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    20. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.

    More about this item

    Keywords

    GARCH; Value-at-Risk; Expected Shortfall; equity; frequency; false discovery rate;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20130047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.