IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v28y2024i3p481-506n1004.html
   My bibliography  Save this article

Co-Jumping of Treasury Yield Curve Rates

Author

Listed:
  • Baruník Jozef

    (The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou Vezi 4, 182 00 Prague, Czech Republic)

  • Fišer Pavel

    (The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou Vezi 4, 182 00 Prague, Czech Republic)

Abstract

We study the role of co-jumps in the interest rate futures markets. To disentangle continuous part of quadratic covariation from co-jumps, we localize the co-jumps precisely through wavelet coefficients and identify statistically significant ones. Using high frequency data about U.S. and European yield curves we quantify the effect of co-jumps on their correlation structure. Empirical findings reveal much stronger co-jumping behavior of the U.S. yield curves in comparison to the European one. Further, we connect co-jumping behavior to the monetary policy announcements, and study effect of 103 FOMC and 119 ECB announcements on the identified co-jumps during the period from January 2007 to December 2017.

Suggested Citation

  • Baruník Jozef & Fišer Pavel, 2024. "Co-Jumping of Treasury Yield Curve Rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 481-506.
  • Handle: RePEc:bpj:sndecm:v:28:y:2024:i:3:p:481-506:n:1004
    DOI: 10.1515/snde-2022-0091
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2022-0091
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2022-0091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    2. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    5. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    6. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    7. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    8. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    9. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    10. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    11. Lars Winkelmann & Markus Bibinger & Tobias Linzert, 2016. "ECB Monetary Policy Surprises: Identification Through Cojumps in Interest Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 613-629, June.
    12. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    13. Tore Ellingsen & Ulf Soderstrom, 2001. "Monetary Policy and Market Interest Rates," American Economic Review, American Economic Association, vol. 91(5), pages 1594-1607, December.
    14. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    15. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
    16. Gnabo, Jean-Yves & Hvozdyk, Lyudmyla & Lahaye, Jérôme, 2014. "System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 147-174.
    17. Dungey, Mardi & Hvozdyk, Lyudmyla, 2012. "Cojumping: Evidence from the US Treasury bond and futures markets," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1563-1575.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    19. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 523-543, December.
    20. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    21. Adam Clements & Yin Liao, 2013. "The dynamics of co-jumps, volatility and correlation," NCER Working Paper Series 91, National Centre for Econometric Research.
    22. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    23. repec:qut:auncer:2013_03 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Semeyutin, Artur & Downing, Gareth, 2022. "Co-jumps in the U.S. interest rates and precious metals markets and their implications for investors," International Review of Financial Analysis, Elsevier, vol. 81(C).
    2. Semeyutin, Artur & Gozgor, Giray & Lau, Chi Keung Marco & Xu, Bing, 2021. "Effects of idiosyncratic jumps and co-jumps on oil, gold, and copper markets," Energy Economics, Elsevier, vol. 104(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    2. Semeyutin, Artur & Downing, Gareth, 2022. "Co-jumps in the U.S. interest rates and precious metals markets and their implications for investors," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    4. Dungey, Mardi & Henry, Olan T & Hvodzdyk, Lyudmyla, 2013. "The impact of jumps and thin trading on realized hedge ratios," Working Papers 2013-02, University of Tasmania, Tasmanian School of Business and Economics, revised 28 Mar 2013.
    5. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    6. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    7. Lars Winkelmann & Markus Bibinger & Tobias Linzert, 2016. "ECB Monetary Policy Surprises: Identification Through Cojumps in Interest Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 613-629, June.
    8. Chan, Kam Fong & Bowman, Robert G. & Neely, Christopher J., 2017. "Systematic cojumps, market component portfolios and scheduled macroeconomic announcements," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 43-58.
    9. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2021. "Volatility forecasting in European government bond markets," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1691-1709.
    10. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    11. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    12. Füss, Roland & Grabellus, Markus & Mager, Ferdinand & Stein, Michael, 2018. "Something in the air: Information density, news surprises, and price jumps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 53(C), pages 50-75.
    13. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    14. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam, 2019. "An empirical examination of the jump and diffusion aspects of asset pricing: Japanese evidence," Working Papers 2019-02, University of Tasmania, Tasmanian School of Business and Economics.
    15. repec:hum:wpaper:sfb649dp2013-038 is not listed on IDEAS
    16. Winkelmann, Lars & Bibinger, Markus & Linzert, Tobias, 2013. "ECB monetary policy surprises: identification through cojumps in interest rates," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79721, Verein für Socialpolitik / German Economic Association.
    17. Winkelmann, Lars & Bibinger, Markus & Linzert, Tobias, 2013. "ECB monetary policy surprises: Identification through cojumps in interest rates," SFB 649 Discussion Papers 2013-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    19. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    20. Semeyutin, Artur & Gozgor, Giray & Lau, Chi Keung Marco & Xu, Bing, 2021. "Effects of idiosyncratic jumps and co-jumps on oil, gold, and copper markets," Energy Economics, Elsevier, vol. 104(C).
    21. Frédéric Délèze & Syed Mujahid Hussain, 2014. "Information Arrival, Jumps and Cojumps in European Financial Markets: Evidence Using Tick by Tick Data," Multinational Finance Journal, Multinational Finance Journal, vol. 18(3-4), pages 169-213, September.

    More about this item

    Keywords

    co-jumps; yield curve; wavelets; high frequency data;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:28:y:2024:i:3:p:481-506:n:1004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.