IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.07731.html
   My bibliography  Save this paper

A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market

Author

Listed:
  • Christian Laudag'e
  • Florian Aichinger
  • Sascha Desmettre

Abstract

Due to major shifts in European energy supply, a structural change can be observed in Austrian electricity spot price data starting from the second quarter of the year 2021 onward. In this work we study the performance of two different factor models for the electricity spot price in three different time periods. To this end, we consider three samples of EEX data for the Austrian base load electricity spot price, one from the pre-crises from 2018 to 2021, the second from the time of the crisis from 2021 to 2023 and the whole data from 2018 to 2023. For each of these samples, we investigate the fit of a classical 3-factor model with a Gaussian base signal and one positive and one negative jump signal and compare it with a 4-factor model to assess the effect of adding a second Gaussian base signal to the model. For the calibration of the models we develop a tailor-made Markov Chain Monte Carlo method based on Gibbs sampling. To evaluate the model adequacy, we provide simulations of the spot price as well as a posterior predictive check for the 3- and the 4-factor model. We find that the 4-factor model outperforms the 3-factor model in times of non-crises. In times of crises, the second Gaussian base signal does not lead to a better fit of the model. To the best of our knowledge, this is the first study regarding stochastic electricity spot price models in this new market environment. Hence, it serves as a solid base for future research.

Suggested Citation

  • Christian Laudag'e & Florian Aichinger & Sascha Desmettre, 2023. "A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market," Papers 2306.07731, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2306.07731
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.07731
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    3. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    4. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    5. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    6. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
    7. Villaplana Conde, Pablo, 2003. "Pricing power derivatives: a two-factor jump-diffusion approach," DEE - Working Papers. Business Economics. WB wb031805, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    8. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    9. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    10. repec:dau:papers:123456789/1433 is not listed on IDEAS
    11. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    12. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    3. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    4. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    5. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Maren Diane Schmeck, 2016. "Pricing Options On Forwards In Energy Markets: The Role Of Mean Reversion'S Speed," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-26, December.
    7. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    8. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    9. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    10. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    11. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    12. Fernandes, Mário Correia & Dias, José Carlos & Nunes, João Pedro Vidal, 2021. "Modeling energy prices under energy transition: A novel stochastic-copula approach," Economic Modelling, Elsevier, vol. 105(C).
    13. Noufel Frikha & Vincent Lemaire, 2012. "Joint Modelling of Gas and Electricity spot prices," Post-Print hal-00421289, HAL.
    14. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    15. Markus Hess, 2020. "Pricing electricity forwards under future information on the stochastic mean-reversion level," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 751-767, December.
    16. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Modelling short and long-term risks in power markets: Empirical evidence from Nord Pool," Energy Policy, Elsevier, vol. 38(10), pages 5671-5683, October.
    17. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    18. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    19. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.07731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.