IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v499y2018icp376-394.html
   My bibliography  Save this article

Effective network inference through multivariate information transfer estimation

Author

Listed:
  • Dahlqvist, Carl-Henrik
  • Gnabo, Jean-Yves

Abstract

Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called “global silencing” approach of Barzel and Barabasi or “network deconvolution” of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank’s centrality measurements relate to bank’s systemic vulnerability.

Suggested Citation

  • Dahlqvist, Carl-Henrik & Gnabo, Jean-Yves, 2018. "Effective network inference through multivariate information transfer estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 376-394.
  • Handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:376-394
    DOI: 10.1016/j.physa.2018.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301377
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    2. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2015. "DebtRank: A Microscopic Foundation for Shock Propagation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    3. Acharya, Viral V., 2009. "A theory of systemic risk and design of prudential bank regulation," Journal of Financial Stability, Elsevier, vol. 5(3), pages 224-255, September.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    8. David F. Hendry & Hans-Martin Krolzig, 1999. "Improving on 'Data mining reconsidered' by K.D. Hoover and S.J. Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 202-219.
    9. Balla, Eliana & Ergen, Ibrahim & Migueis, Marco, 2014. "Tail dependence and indicators of systemic risk for large US depositories," Journal of Financial Stability, Elsevier, vol. 15(C), pages 195-209.
    10. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    11. Mardi Dungey & Matteo Luciani & David Veredas, 2012. "Ranking Systemically Important Financial Institutions," CAMA Working Papers 2012-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Rodriguez, Manuel Gomez & Leskovec, Jure & Balduzzi, David & Schölkopf, Bernhard, 2014. "Uncovering the structure and temporal dynamics of information propagation," Network Science, Cambridge University Press, vol. 2(1), pages 26-65, April.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    15. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    16. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    17. repec:eca:wpaper:2013/130530 is not listed on IDEAS
    18. Stefan Thurner & Sebastian Poledna, 2013. "DebtRank-transparency: Controlling systemic risk in financial networks," Papers 1301.6115, arXiv.org.
    19. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
    2. Paolo Giudici & Laura Parisi, 2016. "CoRisk: measuring systemic risk through default probability contagion," DEM Working Papers Series 116, University of Pavia, Department of Economics and Management.
    3. Mardi Dungey & Matteo Luciani & David Veredas, 2012. "Ranking Systemically Important Financial Institutions," CAMA Working Papers 2012-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    5. Paolo Giudici & Laura Parisi, 2015. "Modeling Systemic Risk with Correlated Stochastic Processes," DEM Working Papers Series 110, University of Pavia, Department of Economics and Management.
    6. Kreis, Yvonne & Leisen, Dietmar P.J., 2018. "Systemic risk in a structural model of bank default linkages," Journal of Financial Stability, Elsevier, vol. 39(C), pages 221-236.
    7. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    8. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    9. Kosmidou, Kyriaki & Kousenidis, Dimitrios & Ladas, Anestis & Negkakis, Christos, 2017. "Determinants of risk in the banking sector during the European Financial Crisis," Journal of Financial Stability, Elsevier, vol. 33(C), pages 285-296.
    10. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    11. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    12. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    13. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    14. Barigozzi, Matteo & Hallin, Marc & Soccorsi, Stefano & von Sachs, Rainer, 2021. "Time-varying general dynamic factor models and the measurement of financial connectedness," Journal of Econometrics, Elsevier, vol. 222(1), pages 324-343.
    15. Christian Brownlees & Robert F. Engle, 2017. "SRISK: A Conditional Capital Shortfall Measure of Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 48-79.
    16. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    17. Paolo Giudici & Peter Sarlin & Alessandro Spelta, 2016. "The multivariate nature of systemic risk: direct and common exposures," DEM Working Papers Series 118, University of Pavia, Department of Economics and Management.
    18. Anufriev, Mikhail & Panchenko, Valentyn, 2015. "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 241-255.
    19. Paolo Giudici & Laura Parisi, 2016. "Bail in or Bail out? The Atlante example from a systemic risk perspective," DEM Working Papers Series 124, University of Pavia, Department of Economics and Management.
    20. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto, 2019. "Estimation and model-based combination of causality networks among large US banks and insurance companies," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:376-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.