IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v59y2014icp300-310.html
   My bibliography  Save this article

Mean–variance asset–liability management with asset correlation risk and insurance liabilities

Author

Listed:
  • Chiu, Mei Choi
  • Wong, Hoi Ying

Abstract

Consider an insurer who invests in the financial market where correlations among risky asset returns are randomly changing over time. The insurer who faces the risk of paying stochastic insurance claims needs to manage her asset and liability by taking into account of the correlation risk. This paper investigates the impact of correlation risk to the optimal asset–liability management (ALM) of an insurer. We employ the Wishart process to model the stochastic covariance matrix of risky asset returns. The insurer aims to minimize the variance of the terminal wealth given an expected terminal wealth subject to the risk of paying out random liabilities of compound Poisson process. This ALM problem then becomes a linear–quadratic stochastic optimal control problem with stochastic volatilities, stochastic correlations and jumps. The recognition of an affine form in the solution process enables us to derive the explicit closed-form solution to the optimal ALM portfolio policy, obtain the efficient frontier, and identify the condition that the solution is well behaved.

Suggested Citation

  • Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
  • Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:300-310
    DOI: 10.1016/j.insmatheco.2014.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714001309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Ball, Clifford A. & Torous, Walter N., 2000. "Stochastic correlation across international stock markets," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 373-388, November.
    3. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    4. Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
    5. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    6. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    9. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    10. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    11. Chiu, Mei Choi & Wong, Hoi Ying, 2011. "Mean-variance portfolio selection of cointegrated assets," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1369-1385, August.
    12. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    13. Ball, Clifford A. & Torous, Walter N., 2000. "Stochastic Correlation Across International Stock Markets," University of California at Los Angeles, Anderson Graduate School of Management qt6vn9q79w, Anderson Graduate School of Management, UCLA.
    14. Tobias J. Moskowitz, 2003. "An Analysis of Covariance Risk and Pricing Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 417-457.
    15. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    16. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    17. Chiu, Mei Choi & Wong, Hoi Ying, 2013. "Optimal investment for an insurer with cointegrated assets: CRRA utility," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 52-64.
    18. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    19. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    20. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    23. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    24. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    25. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    26. Gourieroux, Christian & Sufana, Razvan, 2010. "Derivative Pricing With Wishart Multivariate Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 438-451.
    27. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Pan & Qingxian Xiao, 2017. "Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 491-519, June.
    2. Georgios I. Papayiannis, 2023. "A Framework for Treating Model Uncertainty in the Asset Liability Management Problem," Papers 2310.11987, arXiv.org.
    3. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    4. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    6. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
    7. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    8. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    9. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    10. Zhichao Lu & Peiyuan Pang & Yuhong Xu & Wenxin Zhang, 2024. "Portfolio Selection with Contrarian Strategy," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-28, June.
    11. Chen, Shumin & Liu, Yanchu & Weng, Chengguo, 2019. "Dynamic risk-sharing game and reinsurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 216-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    2. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    3. Marcos Escobar & Sebastian Ferrando & Alexey Rubtsov, 2017. "Optimal investment under multi-factor stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 241-260, February.
    4. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    5. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    6. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    7. Chiu, Mei Choi & Wong, Hoi Ying, 2012. "Mean–variance asset–liability management: Cointegrated assets and insurance liability," European Journal of Operational Research, Elsevier, vol. 223(3), pages 785-793.
    8. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    9. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    10. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    11. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    12. Branger, Nicole & Muck, Matthias, 2012. "Keep on smiling? The pricing of Quanto options when all covariances are stochastic," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1577-1591.
    13. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Redouane Elkamhia & Denitsa Stefanova, 2011. "Dynamic Correlation or Tail Dependence Hedging for Portfolio Selection," Tinbergen Institute Discussion Papers 11-028/2/DSF10, Tinbergen Institute.
    16. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    18. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    19. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    20. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:300-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.