An empirical study on the role of trading volume and data frequency in volatility forecasting
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2739
Download full text from publisher
References listed on IDEAS
- Drost, Feike C & Nijman, Theo E, 1993.
"Temporal Aggregation of GARCH Processes,"
Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
- Drost, F.C. & Nijman, T.E., 1990. "Temporal Aggregation Of Garch Processes," Papers 9066, Tilburg - Center for Economic Research.
- Drost, F.C. & Nijman, T.E., 1992. "Temporal aggregation of GARCH processes," Discussion Paper 1992-40, Tilburg University, Center for Economic Research.
- Drost, F.C. & Nijman, T.E., 1992. "Temporal aggregation of GARCH processes," Other publications TiSEM afe8fdcf-5f83-44b5-8da3-5, Tilburg University, School of Economics and Management.
- Drost, F.C. & Nijman, T.E., 1992. "Temporal Aggregation of Garch Processes," Papers 9240, Tilburg - Center for Economic Research.
- Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
- Drost, F.C. & Nijman, T.E., 1990. "Temporal aggregation of GARCH processes," Other publications TiSEM 929bb665-083a-4d60-906d-e, Tilburg University, School of Economics and Management.
- Drost, F.C. & Nijman, T.E., 1994. "Temporal aggregation of GARCH processes," Other publications TiSEM b6718003-2fa5-43bb-a690-d, Tilburg University, School of Economics and Management.
- Drost, F.C. & Nijman, T.E., 1990. "Temporal aggregation of GARCH processes," Discussion Paper 1990-66, Tilburg University, Center for Economic Research.
- Martens, Martin, 2001. "Forecasting daily exchange rate volatility using intraday returns," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 1-23, February.
- Chan, Choon Chat & Fong, Wai Mun, 2006. "Realized volatility and transactions," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2063-2085, July.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Antonios Antoniou & Phil Holmes & Richard Priestley, 1998. "The effects of stock index futures trading on stock index volatility: An analysis of the asymmetric response of volatility to news," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(2), pages 151-166, April.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Jianping Mei & Jose A. Scheinkman & Wei Xiong, 2009.
"Speculative Trading and Stock Prices: Evidence from Chinese A-B Share Premia,"
Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 225-255, November.
- Jianping Mei & Jose Scheinkman & Wei Xiong, 2005. "Speculative Trading and Stock Prices: Evidence from Chinese A-B Share Premia," NBER Working Papers 11362, National Bureau of Economic Research, Inc.
- Jianping Mei & Jose A. Scheinkman & Wei Xiong, 2009. "Speculative Trading and Stock Prices: Evidence from Chinese A-B Share Premia," CEMA Working Papers 504, China Economics and Management Academy, Central University of Finance and Economics.
- Mauro Bernardi & Leopoldo Catania, 2014.
"The Model Confidence Set package for R,"
Papers
1410.8504, arXiv.org.
- Mauro Bernardi & Leopoldo Catania, 2015. "The Model Confidence Set package for R," CEIS Research Paper 362, Tor Vergata University, CEIS, revised 17 Nov 2015.
- Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
- Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
- Su, Dongwei & Fleisher, Belton M., 1999.
"Why does return volatility differ in Chinese stock markets?,"
Pacific-Basin Finance Journal, Elsevier, vol. 7(5), pages 557-586, December.
- Belton Fleisher & Dongwei Su, 1998. "Why Does Return Volatility Differ in Chinese Stock Markets?," Working Papers 98-03, Ohio State University, Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
- Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005.
"A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
- Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
- Zhou, Weijie & Pan, Jiao & Wu, Xiaoli, 2019. "Forecasting the realized volatility of CSI 300," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
- Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Rahman, Shafiqur & Lee, Cheng-few & Ang, Kian Ping, 2002. "Intraday Return Volatility Process: Evidence from NASDAQ Stocks," Review of Quantitative Finance and Accounting, Springer, vol. 19(2), pages 155-180, September.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Girardin, Eric & Joyeux, Roselyne, 2013.
"Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach,"
Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
- Eric Girardin & Roselyne Joyeux, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Post-Print hal-01499615, HAL.
- Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
- Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009.
"Causality in quantiles and dynamic stock return-volume relations,"
Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
- Chia-Chang Chuang & Chung-Ming Kuan & Hsin-yi Lin, 2007. "Causality in Quantiles and Dynamic Stock Return-Volume Relations," IEAS Working Paper : academic research 07-A006, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Lee, Chien-Chiang & Tsong, Ching-Chuan & Lee, Cheng-Feng, 2014. "Testing For The Efficient Market Hypothesis In Stock Prices: International Evidence From Nonlinear Heterogeneous Panels," Macroeconomic Dynamics, Cambridge University Press, vol. 18(4), pages 943-958, June.
- Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
- Tianyi Wang & Zhuo Huang, 2012. "The Relationship between Volatility and Trading Volume in the Chinese Stock Market: A Volatility Decomposition Perspective," Annals of Economics and Finance, Society for AEF, vol. 13(1), pages 211-236, May.
- Zheng, Zeyu & Gui, Jun & Qiao, Zhi & Fu, Yang & Stanley, H.Eugene & Li, Baowen, 2019. "New dynamics between volume and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1343-1350.
- Dimos S. Kambouroudis & David G. McMillan, 2016. "Does VIX or volume improve GARCH volatility forecasts?," Applied Economics, Taylor & Francis Journals, vol. 48(13), pages 1210-1228, March.
- Malik, Ali Khalil, 2005. "European exchange rate volatility dynamics: an empirical investigation," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 187-215, January.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Lopez, Jose A, 2001.
"Evaluating the Predictive Accuracy of Volatility Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
- Jose A. Lopez, 1995. "Evaluating the predictive accuracy of volatility models," Research Paper 9524, Federal Reserve Bank of New York.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
- Jennings, Robert H & Starks, Laura T & Fellingham, John C, 1981. "An Equilibrium Model of Asset Trading with Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 36(1), pages 143-161, March.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Chen, Mei-Ping & Chen, Pei-Fen & Lee, Chien-Chiang, 2014. "Frontier stock market integration and the global financial crisis," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 84-103.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003.
"Choosing the Best Volatility Models: The Model Confidence Set Approach,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the best volatility models: the model confidence set approach," FRB Atlanta Working Paper 2003-28, Federal Reserve Bank of Atlanta.
- Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
- Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
- Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
- Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
- Lee, Chien-Chiang & Chen, Mei-Ping & Chang, Chi-Hung, 2013. "Dynamic relationships between industry returns and stock market returns," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 119-144.
- Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
- Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
- Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
- Narayan, Paresh Kumar & Zheng, Xinwei, 2011. "The relationship between liquidity and returns on the Chinese stock market," Journal of Asian Economics, Elsevier, vol. 22(3), pages 259-266, June.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
- Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
- Liu, Min & Taylor, James W. & Choo, Wei-Chong, 2020. "Further empirical evidence on the forecasting of volatility with smooth transition exponential smoothing," Economic Modelling, Elsevier, vol. 93(C), pages 651-659.
- Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
- J. Xu, 1999. "Modeling Shanghai stock market volatility," Annals of Operations Research, Springer, vol. 87(0), pages 141-152, April.
- Michael Smirlock & Laura Starks, 1985. "A Further Examination Of Stock Price Changes And Transaction Volume," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 8(3), pages 217-226, September.
- Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Martin Martens & Yuan‐Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299, June.
- Merton, Robert C., 1980.
"On estimating the expected return on the market : An exploratory investigation,"
Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
- Robert C. Merton, 1980. "On Estimating the Expected Return on the Market: An Exploratory Investigation," NBER Working Papers 0444, National Bureau of Economic Research, Inc.
- Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
- Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
- Waël Louhichi, 2011. "What drives the volume-volatility relationship on Euronext Paris?," Post-Print halshs-00601370, HAL.
- Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
- Daniel Borup & Johan S. Jakobsen, 2019. "Capturing volatility persistence: a dynamically complete realized EGARCH-MIDAS model," Quantitative Finance, Taylor & Francis Journals, vol. 19(11), pages 1839-1855, November.
- Louhichi, Waël, 2011. "What drives the volume-volatility relationship on Euronext Paris?," International Review of Financial Analysis, Elsevier, vol. 20(4), pages 200-206, August.
- Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
- Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
- Eric Girardin & Zhenya Liu, 2003. "The Chinese Stock Market: A Casino with 'Buffer Zones'?," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 1(1), pages 57-70.
- Chien, Mei-Se & Lee, Chien-Chiang & Hu, Te-Chung & Hu, Hui-Ting, 2015. "Dynamic Asian stock market convergence: Evidence from dynamic cointegration analysis among China and ASEAN-5," Economic Modelling, Elsevier, vol. 51(C), pages 84-98.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Min & Guo, Tongji & Ping, Weiying & Luo, Liangqing, 2023. "Sustainability and stability: Will ESG investment reduce the return and volatility spillover effects across the Chinese financial market?," Energy Economics, Elsevier, vol. 121(C).
- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Wang, Jia & Wang, Xinyi & Wang, Xu, 2024. "International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
- Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Chang, Hao-Wen & Chang, Tsangyao & Lee, Chien-Chiang, 2023. "Return and volatility connectedness among the BRICS stock and oil markets," Resources Policy, Elsevier, vol. 86(PA).
- Cunado, Juncal & Chatziantoniou, Ioannis & Gabauer, David & de Gracia, Fernando Perez & Hardik, Marfatia, 2023. "Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Damien Kunjal & Faeezah Peerbhai & Paul-Francois Muzindutsi, 2022. "Political, economic, and financial country risks and the volatility of the South African Exchange Traded Fund market: A GARCH-MIDAS approach," Risk Management, Palgrave Macmillan, vol. 24(3), pages 236-258, September.
- Lee, Hsiang-Tai & Lee, Chien-Chiang, 2022. "A regime-switching real-time copula GARCH model for optimal futures hedging," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).
- Liu, Min & Lee, Chien-Chiang, 2022. "Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS," Resources Policy, Elsevier, vol. 76(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
- Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
- repec:uts:finphd:39 is not listed on IDEAS
- Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Christian T. Brownlees & Giampiero M. Gallo, 2010.
"Comparison of Volatility Measures: a Risk Management Perspective,"
Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
- Christian T. Brownlees & Giampiero M. Gallo, 2007. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2007_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
- repec:uts:finphd:38 is not listed on IDEAS
- Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003.
"Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility,"
PIER Working Paper Archive
03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
- Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
- Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024.
"Doubly multiplicative error models with long- and short-run components,"
Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
- Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
- Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
- Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).
- Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:5:p:792-816. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.