IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v24y2003i6p721-738.html
   My bibliography  Save this article

Non‐Gaussian Filter and Smoother Based on the Pearson Distribution System

Author

Listed:
  • Yuichi Nagahara

Abstract

The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.

Suggested Citation

  • Yuichi Nagahara, 2003. "Non‐Gaussian Filter and Smoother Based on the Pearson Distribution System," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(6), pages 721-738, November.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:6:p:721-738
    DOI: 10.1111/j.1467-9892.2003.00331.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2003.00331.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2003.00331.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    2. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    3. Parrish, Rudolph S., 1983. "On an integrated approach to member selection and parameter estimation for Pearson distributions," Computational Statistics & Data Analysis, Elsevier, vol. 1(1), pages 239-255, March.
    4. Nagahara, Yuichi, 1999. "The PDF and CF of Pearson type IV distributions and the ML estimation of the parameters," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 251-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Nagahara, 2008. "A Method of Calculating the Downside Risk by Multivariate Nonnormal Distributions," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(3), pages 175-184, December.
    2. Yuichi Nagahara, 2011. "Using Nonnormal Distributions to Analyze the Relationship Between Stock Returns in Japan and the US," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(4), pages 429-443, November.
    3. Fabio Pizzutilo, 2013. "The Distribution of the Returns of Japanese Stocks and Portfolios," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(9), pages 1249-1259, September.
    4. Nagahara, Yuichi, 2004. "A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    2. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    6. Fabio Pizzutilo, 2013. "The Distribution of the Returns of Japanese Stocks and Portfolios," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(9), pages 1249-1259, September.
    7. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    8. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.
    9. Haakon Kavli & Kevin Kotzé, 2014. "Spillovers in Exchange Rates and the Effects of Global Shocks on Emerging Market Currencies," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 209-238, June.
    10. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    11. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    12. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    13. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    14. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    15. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Nagahara, Yuichi, 2004. "A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 1-29, August.
    17. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    18. Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
    19. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:6:p:721-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.