IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2014-021.html
   My bibliography  Save this paper

Do maternal health problems influence child's worrying status? Evidence from British cohort study

Author

Listed:
  • Dai, Xianhua
  • Härdle, Wolfgang Karl
  • Yu, Keming

Abstract

The influence of maternal health problems on child's worrying status is important in practice in terms of the intervention of maternal health problems early for the influence on child's worrying status. Conventional methods apply symmetric prior distributions such as a normal distribution or a Laplace distribituion for regression coefficients, which may be suitable for median regression and exhibit no robustness to outliers. This paper develops a quantile regression on linear panel data model without heterogeneity from a Bayesian point of view, and examines the influence of maternal health problems on child's worrying status. Upon a location-scale mixture representation of the asymmetric Laplace error distribution, this paper provides how the posterior distribution can be sampled and summarized by Markov chain Monte Carlo method. Applying for the 1970 British Cohort Study data, we find and that a different maternal health problem has different influence on child's worrying status at different quantiles. In addition, applying stochastic search variable selection for maternal health problems in the 1970 British Cohort Study data, we find that maternal nervous breakdown, in our work, among the 25 maternal health problems, contributes most to influence the child's worrying status.

Suggested Citation

  • Dai, Xianhua & Härdle, Wolfgang Karl & Yu, Keming, 2014. "Do maternal health problems influence child's worrying status? Evidence from British cohort study," SFB 649 Discussion Papers 2014-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2014-021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/93217/1/780306171.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:bfi:wpaper:2014-014 is not listed on IDEAS
    2. L Feinstein, 2000. "The Relative Economic Importance of Academic, Psychological and Behavioural Attributes Developed on Chilhood," CEP Discussion Papers dp0443, Centre for Economic Performance, LSE.
    3. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    4. Sabine K. Schnabel & Paul Eilers, 2009. "An analysis of life expectancy and economic production using expectile frontier zones," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(5), pages 109-134.
    5. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    6. Robert Kaestner & Kevin Callison, 2011. "Adolescent Cognitive and Noncognitive Correlates of Adult Health," Journal of Human Capital, University of Chicago Press, vol. 5(1), pages 29-69.
    7. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    8. James J. Heckman & Jora Stixrud & Sergio Urzua, 2006. "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 411-482, July.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    10. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    11. Jo Blanden & Paul Gregg & Lindsey Macmillan, 2007. "Accounting for Intergenerational Income Persistence: Noncognitive Skills, Ability and Education," Economic Journal, Royal Economic Society, vol. 117(519), pages 43-60, March.
    12. Yu, Keming, 2002. "Quantile regression using RJMCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 303-315, August.
    13. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    14. Hideo Kozumi & Genya Kobayashi, 2009. "Gibbs Sampling Methods for Bayesian Quantile Regression," Discussion Papers 2009-02, Kobe University, Graduate School of Business Administration.
    15. Dai, Xianhua & Heckman, James J., 2013. "Older siblings' contributions to young child's cognitive skills," Economic Modelling, Elsevier, vol. 35(C), pages 235-248.
    16. Cutler, David M. & Lleras-Muney, Adriana, 2010. "Understanding differences in health behaviors by education," Journal of Health Economics, Elsevier, vol. 29(1), pages 1-28, January.
    17. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    18. Gabriella Conti & James Heckman & Sergio Urzua, 2010. "The Education-Health Gradient," American Economic Review, American Economic Association, vol. 100(2), pages 234-238, May.
    19. Mengmeng Guo & Wolfgang Härdle, 2012. "Simultaneous confidence bands for expectile functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 517-541, October.
    20. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    21. Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
    22. Yu, Keming & Stander, Julian, 2007. "Bayesian analysis of a Tobit quantile regression model," Journal of Econometrics, Elsevier, vol. 137(1), pages 260-276, March.
    23. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    24. Hanson T. & Johnson W.O., 2002. "Modeling Regression Error With a Mixture of Polya Trees," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1020-1033, December.
    25. Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
    26. Schnabel, Sabine K. & Eilers, Paul H.C., 2009. "Optimal expectile smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4168-4177, October.
    27. Stephen Walker & Bani K. Mallick, 1999. "A Bayesian Semiparametric Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 55(2), pages 477-483, June.
    28. Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
    29. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    30. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    31. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    32. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    33. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
    2. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    3. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    4. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    5. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    6. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    7. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    8. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    9. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.
    10. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
    11. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    12. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    13. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    14. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    15. repec:bfi:wpaper:2014-014 is not listed on IDEAS
    16. Naci Mocan & Duha Altindag, 2014. "Education, cognition, health knowledge, and health behavior," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(3), pages 265-279, April.
    17. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    18. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    19. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    20. Attanasio, Orazio & Blundell, Richard & Conti, Gabriella & Mason, Giacomo, 2020. "Inequality in socio-emotional skills: A cross-cohort comparison," Journal of Public Economics, Elsevier, vol. 191(C).
    21. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    22. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Keywords

    British Cohort Study data; Bayesian inference; Quantile regression; Asymmetric Laplace error distribution; Markov chain Monte Carlo; Variable selection;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.