IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v22y2019i3d10.1007_s11147-018-09153-6.html
   My bibliography  Save this article

Valuation of an option using non-parametric methods

Author

Listed:
  • Shu Ling Chiang

    (National Kaohsiung Normal University)

  • Ming Shann Tsai

    (National University of Kaohsiung)

Abstract

This paper provides a general valuation model to fairly price a European option using parametric and non-parametric methods. In particular, we show how to use the historical simulation (HS) method, a well-known non-parametric statistical method applied in the financial area, to price an option. The advantage of the HS method is that one can directly obtain the distribution of stock returns from historical market data. Thus, it not only does a good job in capturing any characteristics of the return distribution, such as clustering and fat tails, but it also eliminates the model errors created by mis-specifying the distribution of underlying assets. To solve the problem of measuring transformation in valuing options, we use the Esscher’s transform to convert the physical probability measure to the forward probability measure. Taiwanese put and call options are used to illustrate the application of this method. To clearly show which model prices stock options most accurately, we compare the pricing errors from the HS method with those from the Black–Scholes (BS) model. The results show that the HS model is more accurate than the BS model, regardless for call or put options. More importantly, because there is no complex mathematical theory underlying the HS method, it can easily be applied in practice and help market participants manage complicated portfolios effectively.

Suggested Citation

  • Shu Ling Chiang & Ming Shann Tsai, 2019. "Valuation of an option using non-parametric methods," Review of Derivatives Research, Springer, vol. 22(3), pages 419-447, October.
  • Handle: RePEc:kap:revdev:v:22:y:2019:i:3:d:10.1007_s11147-018-09153-6
    DOI: 10.1007/s11147-018-09153-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-018-09153-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-018-09153-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    4. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    5. Nam, Seung Oh & Oh, SeungYoung & Kim, Hyun Kyung & Kim, Byung Chun, 2006. "An empirical analysis of the price discovery and the pricing bias in the KOSPI 200 stock index derivatives markets," International Review of Financial Analysis, Elsevier, vol. 15(4-5), pages 398-414.
    6. Cao, M. & Wei, J., 1999. "Pricing Weather Derivative : An Equilibrium Approach," Rotman School of Management - Finance 99-002, Rotman School of Management, University of Toronto.
    7. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    8. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. Kim, Namhyoung & Lee, Jaewook, 2013. "No-arbitrage implied volatility functions: Empirical evidence from KOSPI 200 index options," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 36-53.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    15. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    16. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    17. Chen, Song Xi & Xu, Zheng, 2014. "On implied volatility for options—Some reasons to smile and more to correct," Journal of Econometrics, Elsevier, vol. 179(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
    3. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    4. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Moritz Duembgen & L. C. G. Rogers, 2014. "Estimate nothing," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2065-2072, December.
    7. Zhou, Qing & Zhang, Xili, 2020. "Pricing equity warrants in Merton jump–diffusion model with credit risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    9. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    11. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    14. Mi-Hsiu Chiang & Chang-Yi Li & Son-Nan Chen, 2016. "Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 459-482, April.
    15. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    16. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    17. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    18. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    20. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.

    More about this item

    Keywords

    Option; Historical simulation method; Non-parametric statistics; Valuation model;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:22:y:2019:i:3:d:10.1007_s11147-018-09153-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.