A Vector Multiplicative Error Model with Spillover Effects and Co-movements
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013.
"Semiparametric Vector Mem,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2009. "Semiparametric vector MEM," Econometrics Working Papers Archive wp2009_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017.
"Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity,"
Econometrics, MDPI, vol. 5(2), pages 1-24, April.
- Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula-based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics Working Papers Archive 2017_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Otranto, Edoardo, 2010.
"Identifying financial time series with similar dynamic conditional correlation,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
- E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Engle, Robert F. & Gallo, Giampiero M., 2006.
"A multiple indicators model for volatility using intra-daily data,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
- Tomoaki Nakatani & Timo Terasvirta, 2009.
"Testing for volatility interactions in the Constant Conditional Correlation GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
- Nakatani, Tomoaki & Teräsvirta, Timo, 2007. "Testing for Volatility Interactions in the Constant Conditional Correlation GARCH Model," SSE/EFI Working Paper Series in Economics and Finance 649, Stockholm School of Economics, revised 04 May 2008.
- Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
- Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gallo, Giampiero M. & Otranto, Edoardo, 2008.
"Volatility spillovers, interdependence and comovements: A Markov Switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
- Giampiero Gallo & Edoardo Otranto, 2007. "Volatility Spillovers, Interdependence and Comovements: A Markov Switching Approach," Econometrics Working Papers Archive wp2007_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Marcello Pericoli & Massimo Sbracia, 2003.
"A Primer on Financial Contagion,"
Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 571-608, September.
- Marcello Pericoli & Massimo Sbracia, 2001. "A Primer on Financial Contagion," Temi di discussione (Economic working papers) 407, Bank of Italy, Economic Research and International Relations Area.
- Diebold, Francis X. & Yilmaz, Kamil, 2012.
"Better to give than to receive: Predictive directional measurement of volatility spillovers,"
International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
- Francis X. Diebold & Kamil Yilmaz, 2010. "Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1001, Koc University-TUSIAD Economic Research Forum, revised Mar 2010.
- Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
- N. Taylor & Y. Xu, 2017.
"The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data,"
Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
- Taylor, Nick & Xu, Yongdeng, 2013. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Cardiff Economics Working Papers E2013/7, Cardiff University, Cardiff Business School, Economics Section.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
- Cipollini, Fabrizio & Gallo, Giampiero M., 2025.
"Multiplicative Error Models: 20 years on,"
Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
- Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
- Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
- E. Otranto, 2012. "Spillover Effects in the Volatility of Financial Markets," Working Paper CRENoS 201217, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
- Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2024.
"Asymmetric volatility spillover between crude oil and other asset markets,"
Energy Economics, Elsevier, vol. 130(C).
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2023. "Asymmetric volatility spillover between crude oil and other asset markets," Cardiff Economics Working Papers E2023/27, Cardiff University, Cardiff Business School, Economics Section.
- Xu, Yongdeng & Guan, Bo & Lu, Wenna & Heravi, Saeed, 2024.
"Macroeconomic shocks and volatility spillovers between stock, bond, gold and crude oil markets,"
Energy Economics, Elsevier, vol. 136(C).
- Xu, Yongdeng & Guan, Bo & Lu, Wenna & Heravi, Saeed, 2024. "Macroeconomic shocks and volatility spillovers between stock, bond, gold and crude oil markets," Cardiff Economics Working Papers E2024/15, Cardiff University, Cardiff Business School, Economics Section.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2017. "Improving (E)GARCH forecasts with robust realized range measures: Evidence from international markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 631-658, October.
- Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
- Giampiero M. Gallo & Edoardo Otranto, 2018.
"Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
- Giampiero M. Gallo & Edoardo Otranto, 2017. "Combining Sharp and Smooth Transitions in Volatility Dynamics: a Fuzzy Regime Approach," Econometrics Working Papers Archive 2017_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
- Edoardo Otranto & Romana Gargano, 2015.
"Financial clustering in presence of dominant markets,"
Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
- R. Gargano & E. Otranto, 2013. "Financial Clustering in Presence of Dominant Markets," Working Paper CRENoS 201318, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
More about this item
Keywords
vector of volatility; multiplicative factors; model-based clustering; high-low range; high-dimensional time series;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-03-04 (Econometrics)
- NEP-ETS-2024-03-04 (Econometric Time Series)
- NEP-IFN-2024-03-04 (International Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cns:cnscwp:202404. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CRENoS (email available below). General contact details of provider: https://edirc.repec.org/data/crenoit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.