IDEAS home Printed from https://ideas.repec.org/p/aah/create/2016-15.html
   My bibliography  Save this paper

The Local Fractional Bootstrap

Author

Listed:
  • Mikkel Bennedsen

    (Aarhus University and CREATES)

  • Ulrich Hounyo

    (Aarhus University and CREATES)

  • Asger Lunde

    (Aarhus University and CREATES)

  • Mikko S. Pakkanen

    (Imperial College London and CREATES)

Abstract

We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method to two empirical data sets: we assess the roughness of a time series of high-frequency asset prices and we test the validity of Kolmogorov's scaling law in atmospheric turbulence data.

Suggested Citation

  • Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2016-15
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/16/rp16_15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    2. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," CREATES Research Papers 2015-43, Department of Economics and Business Economics, Aarhus University.
    3. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    4. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    5. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    6. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    7. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    8. Nourdin, Ivan & Peccati, Giovanni & Podolskij, Mark, 2011. "Quantitative Breuer-Major theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 793-812, April.
    9. Ole E. Barndorff-Nielsen, 2016. "Assessing Gamma kernels and BSS/LSS processes," CREATES Research Papers 2016-09, Department of Economics and Business Economics, Aarhus University.
    10. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    11. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.
    12. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    13. Gabriel Lang & François Roueff, 2001. "Semi-parametric Estimation of the Hölder Exponent of a Stationary Gaussian Process with Minimax Rates," Statistical Inference for Stochastic Processes, Springer, vol. 4(3), pages 283-306, October.
    14. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    15. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    2. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    3. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    2. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    3. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    4. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    5. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    6. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    7. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    8. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    9. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    10. Li, Yuan & Pakkanen, Mikko S. & Veraart, Almut E.D., 2023. "Limit theorems for the realised semicovariances of multivariate Brownian semistationary processes," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 202-231.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    12. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    13. He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
    14. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    15. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
    16. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    17. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    18. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    19. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    20. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.

    More about this item

    Keywords

    Brownian semistationary process; roughness; fractal index; Hölder regularity; fractional Brownian motion; bootstrap; stochastic volatility; turbulence JEL Classification: C12; C22; C63; G12 MSC 2010 Classification: 60G10; 60G15; 60G17; 60G22; 62M07; 62M09; 65C05;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2016-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.