IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v230y2022i2p510-534.html
   My bibliography  Save this article

Local mispricing and microstructural noise: A parametric perspective

Author

Listed:
  • Andersen, Torben G.
  • Archakov, Ilya
  • Cebiroglu, Gökhan
  • Hautsch, Nikolaus

Abstract

We extend the classic ”martingale-plus-noise” model for high-frequency returns to accommodate an error correction mechanism and endogenous pricing errors. It is motivated by (i) novel empirical evidence documenting that microstructure noise exhibits frequently changing patterns of serial dependence which are interwoven with innovations to the efficient price; (ii) building a bridge between high-frequency econometrics and market microstructure models. We identify temporal pricing error correction and noise endogeneity as complementary components driving high-frequency dynamics and inducing two separate regimes, characterized by the sign of the return serial correlation and an implied bias in realized variance estimates. We document frequent fluctuations between these regimes, which can be associated with price discovery in a setting with incomplete information and learning. The model links critical concepts from high-frequency statistics and market microstructure theory, suggesting new avenues for volatility estimation.

Suggested Citation

  • Andersen, Torben G. & Archakov, Ilya & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2022. "Local mispricing and microstructural noise: A parametric perspective," Journal of Econometrics, Elsevier, vol. 230(2), pages 510-534.
  • Handle: RePEc:eee:econom:v:230:y:2022:i:2:p:510-534
    DOI: 10.1016/j.jeconom.2021.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    2. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
    3. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    4. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    5. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.
    6. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    7. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    8. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    9. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    10. Chan, Kalok, 1993. "Imperfect Information and Cross-Autocorrelation among Stock Prices," Journal of Finance, American Finance Association, vol. 48(4), pages 1211-1230, September.
    11. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    12. Hasbrouck, Joel & Ho, Thomas S Y, 1987. "Order Arrival, Quote Behavior, and the Return-Generating Process," Journal of Finance, American Finance Association, vol. 42(4), pages 1035-1048, September.
    13. Vives Xavier, 1995. "The Speed of Information Revelation in a Financial Market Mechanism," Journal of Economic Theory, Elsevier, vol. 67(1), pages 178-204, October.
    14. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    15. Holden, Craig W & Subrahmanyam, Avanidhar, 1992. "Long-Lived Private Information and Imperfect Competition," Journal of Finance, American Finance Association, vol. 47(1), pages 247-270, March.
    16. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
    17. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    18. Hasbrouck, Joel, 1993. "Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 191-212.
    19. Jean Jacod & Yingying Li & Xinghua Zheng, 2017. "Statistical Properties of Microstructure Noise," Econometrica, Econometric Society, vol. 85, pages 1133-1174, July.
    20. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    21. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    22. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    23. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    24. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    25. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    26. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    27. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    28. Amihud, Yakov & Mendelson, Haim, 1987. "Trading Mechanisms and Stock Returns: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 42(3), pages 533-553, July.
    29. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    2. Markus Bibinger & Nikolaus Hautsch & Alexander Ristig, 2024. "Jump detection in high-frequency order prices," Papers 2403.00819, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    2. Andersen, Torben G. & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2017. "Volatility, information feedback and market microstructure noise: A tale of two regimes," CFS Working Paper Series 569, Center for Financial Studies (CFS).
    3. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    4. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    6. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
    7. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    8. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    9. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    10. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    11. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    12. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    13. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    14. repec:uts:finphd:39 is not listed on IDEAS
    15. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    16. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    17. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    18. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    19. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    20. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    21. Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.

    More about this item

    Keywords

    Volatility estimation; Market microstructure noise; Price reversal; Momentum; Contrarian trading;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:230:y:2022:i:2:p:510-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.