IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i4p1235-1256.html
   My bibliography  Save this article

Forgetting the initial distribution for Hidden Markov Models

Author

Listed:
  • Douc, R.
  • Fort, G.
  • Moulines, E.
  • Priouret, P.

Abstract

The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter started from two different initial distributions, and a convergence in expectation are considered. The results are illustrated using different HMM of interest: the dynamic tobit model, the nonlinear state space model and the stochastic volatility model.

Suggested Citation

  • Douc, R. & Fort, G. & Moulines, E. & Priouret, P., 2009. "Forgetting the initial distribution for Hidden Markov Models," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1235-1256, April.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1235-1256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00104-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    2. Budhiraja, A. & Ocone, D., 1999. "Exponential stability in discrete-time filtering for non-ergodic signals," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 245-257, August.
    3. Moral, P. Del & Guionnet, A., 1998. "Large deviations for interacting particle systems: Applications to non-linear filtering," Stochastic Processes and their Applications, Elsevier, vol. 78(1), pages 69-95, October.
    4. LeGland, François & Oudjane, Nadia, 2003. "A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals," Stochastic Processes and their Applications, Elsevier, vol. 106(2), pages 279-316, August.
    5. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Aurora Manrique & Neil Shephard, 1998. "Simulation-based likelihood inference for limited dependent processes," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 174-202.
    8. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Travers, Nicholas F., 2014. "Exponential bounds for convergence of entropy rate approximations in hidden Markov models satisfying a path-mergeability condition," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4149-4170.
    2. Laruelle Sophie & Pagès Gilles, 2012. "Stochastic approximation with averaging innovation applied to Finance," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 1-51, January.
    3. Nick Whiteley & Nikolas Kantas, 2017. "Calculating Principal Eigen-Functions of Non-Negative Integral Kernels: Particle Approximations and Applications," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1007-1034, November.
    4. Jacob, Pierre E., 2012. "Contributions computationnelles à la statistique Bayésienne," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/12804 edited by Robert, Christian P..
    5. van Handel, Ramon, 2009. "Uniform time average consistency of Monte Carlo particle filters," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3835-3861, November.
    6. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    2. Pitt, Michael K., 2002. "Smooth particle filters for likelihood evaluation and maximisation," Economic Research Papers 269464, University of Warwick - Department of Economics.
    3. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.
    4. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    5. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    6. Loddo, Antonello & Ni, Shawn & Sun, Dongchu, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 342-355.
    7. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    8. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    9. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    10. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
    11. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    12. Zhiqiang Li & Jie Xiong, 2015. "Stability of the filter with Poisson observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 293-313, October.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    15. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    16. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    17. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    18. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    19. Neil Shephard & Michael K. Pitt, 1999. "Auxiliary variable based particle filters," Economics Series Working Papers 1999-W13, University of Oxford, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1235-1256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.