IDEAS home Printed from https://ideas.repec.org/p/ags/uwarer/269464.html
   My bibliography  Save this paper

Smooth particle filters for likelihood evaluation and maximisation

Author

Listed:
  • Pitt, Michael K.

Abstract

In this paper, a method is introduced for approximating the likelihood for the unknown parameters of a state space model. The approximation converges to the true likelihood as the simulation size goes to infinity. In addition, the approximating likelihood is continuous as a function of the unknown parameters under rather general conditions. The approach advocated is fast, robust and avoids many of the pitfalls associated with current techniques based upon importance sampling. We assess the performance of the method by considering a linear state space model, comparing the results with the Kalman filter, which delivers the true likelihood. We also apply the method to a non-Gaussian state space model, the Stochastic Volatility model, finding that the approach is efficient and effective. Applications to continuous time finance models are also considered. A result is established which allows the likelihood to be estimated quickly and efficiently using the output from the general auxilary particle filter.

Suggested Citation

  • Pitt, Michael K., 2002. "Smooth particle filters for likelihood evaluation and maximisation," Economic Research Papers 269464, University of Warwick - Department of Economics.
  • Handle: RePEc:ags:uwarer:269464
    DOI: 10.22004/ag.econ.269464
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/269464/files/twerp651.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/269464/files/twerp651.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.269464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    3. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    4. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    6. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    7. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    8. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    9. Richard Gerlach & Chris Carter & Robert Kohn, 1999. "Diagnostics for Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(3), pages 309-330, May.
    10. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    11. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 153-173, Suppl. De.
    12. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    13. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasis Kratsios & Cody B. Hyndman, 2017. "Non-Euclidean Conditional Expectation and Filtering," Papers 1710.05829, arXiv.org, revised Sep 2018.
    2. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
    3. Tarjáni, Hajnalka & Csorba, Gergely, 2005. "Nyári Műhely. MTA Közgazdaságtudományi Intézet, Budapest, 2005. június 27-29 [Summer workshop]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 698-706.
    4. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    5. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    6. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.
    7. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.
    8. Maciej Augustyniak & Mathieu Boudreault & Manuel Morales, 2018. "Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 165-188, March.
    9. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    10. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    11. Elena Ehrlich & Ajay Jasra & Nikolas Kantas, 2015. "Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 315-349, June.
    12. Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013. "Efficient Likelihood Evaluation of State-Space Representations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 538-567.
    13. Giuliano De Rossi, 2004. "Maximum likelihood estimation of the Cox-Ingersoll-Ross model using particle filters," Computing in Economics and Finance 2004 302, Society for Computational Economics.
    14. Benedikt Rotermann & Bernd Wilfling, 2015. "Estimating rational stock-market bubbles with sequential Monte Carlo methods," CQE Working Papers 4015, Center for Quantitative Economics (CQE), University of Muenster.
    15. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    16. Nicholas G. Polson & Jonathan R. Stroud & Peter Müller, 2008. "Practical filtering with sequential parameter learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 413-428, April.
    17. Duan, Jin-Chuan & Fulop, Andras, 2009. "Estimating the structural credit risk model when equity prices are contaminated by trading noises," Journal of Econometrics, Elsevier, vol. 150(2), pages 288-296, June.
    18. Kensuke Kato & Nobuhiro Nakamura, 2024. "PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 389-421, June.
    19. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    7. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    8. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    9. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    10. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    11. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    12. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    13. Neil Shephard & Michael K. Pitt, 1999. "Auxiliary variable based particle filters," Economics Series Working Papers 1999-W13, University of Oxford, Department of Economics.
    14. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    15. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    16. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    17. Liesenfeld, Roman & Breitung, Jörg, 1998. "Simulation based methods of moments in empirical finance," Tübinger Diskussionsbeiträge 136, University of Tübingen, School of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwarer:269464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.