IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i6p829-852.html
   My bibliography  Save this article

Realized volatility with stochastic sampling

Author

Listed:
  • Fukasawa, Masaaki

Abstract

A central limit theorem for the realized volatility of a one-dimensional continuous semimartingale based on a general stochastic sampling scheme is proved. The asymptotic distribution depends on the sampling scheme, which is written explicitly in terms of the asymptotic skewness and kurtosis of returns. Conditions for the central limit theorem to hold are examined for several concrete examples of schemes. Lower bounds for mean squared error and for asymptotic conditional variance are given, which are attained by using a specific sampling scheme.

Suggested Citation

  • Fukasawa, Masaaki, 2010. "Realized volatility with stochastic sampling," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 829-852, June.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:6:p:829-852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00045-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    2. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    3. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    4. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
    5. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    6. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    2. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    3. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    4. Altmeyer, Randolf & Bibinger, Markus, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers 2014-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    6. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    7. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    8. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    9. Yoann Potiron & Per Mykland, 2020. "Local Parametric Estimation in High Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 679-692, July.
    10. Clinet, Simon & Potiron, Yoann, 2018. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Journal of Econometrics, Elsevier, vol. 206(1), pages 103-142.
    11. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.
    12. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    13. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    14. Fukasawa, Masaaki & Rosenbaum, Mathieu, 2012. "Central limit theorems for realized volatility under hitting times of an irregular grid," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3901-3920.
    15. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    16. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
    17. Rui Da & Dacheng Xiu, 2021. "When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility," Econometrica, Econometric Society, vol. 89(6), pages 2787-2825, November.
    18. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
    19. Chang, Patrick & Pienaar, Etienne & Gebbie, Tim, 2021. "The Epps effect under alternative sampling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    21. Yuta Koike & Zhi Liu, 2019. "Asymptotic properties of the realized skewness and related statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 703-741, August.
    22. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    23. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    24. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    25. repec:hum:wpaper:sfb649dp2014-005 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    2. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    3. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    4. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    5. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    6. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    7. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    8. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    9. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    10. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Subsampling realised kernels," Journal of Econometrics, Elsevier, vol. 160(1), pages 204-219, January.
    11. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    12. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    13. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    14. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    15. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    16. Yacine Ait-Sahalia & Jialin Yu, 2008. "High Frequency Market Microstructure Noise Estimates and Liquidity Measures," NBER Working Papers 13825, National Bureau of Economic Research, Inc.
    17. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    18. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    19. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    20. Jeremy Large, 2005. "Estimating Quadratic Variation When Quoted Prices Jump by a Constant Increment," Economics Series Working Papers 2005-FE-05, University of Oxford, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:6:p:829-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.