IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v43y2022i1p53-82.html
   My bibliography  Save this article

Double Smoothed Volatility Estimation of Potentially Non‐stationary Jump‐diffusion Model of Shibor

Author

Listed:
  • Yuping Song
  • Weijie Hou
  • Zhengyan Lin

Abstract

The occurrence‐50 of economic policies and other sudden and large shocks often bring out jumps in financial data, which can be characterized through continuous‐time jump‐diffusion model. In this article, we present the double smoothed non‐parametric approach for infinitesimal conditional volatility of jump‐diffusion model based on high frequency data. Under certain minimal conditions, we obtain the strong consistency and asymptotic normality for the estimator as the time span T → ∞ and the sample interval Δn→0. The procedure and asymptotic behavior can be applied for both Harris recurrent and positive Harris recurrent processes. The finite sample properties of the underlying double smoothed volatility estimator are verified through Monte Carlo simulation and Shanghai Interbank Offered Rate in China for application.

Suggested Citation

  • Yuping Song & Weijie Hou & Zhengyan Lin, 2022. "Double Smoothed Volatility Estimation of Potentially Non‐stationary Jump‐diffusion Model of Shibor," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 53-82, January.
  • Handle: RePEc:bla:jtsera:v:43:y:2022:i:1:p:53-82
    DOI: 10.1111/jtsa.12592
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12592
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ke-Li Xu & Peter C. B. Phillips, 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 518-528, October.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    4. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    5. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    6. Yingyu Chen & Lixin Zhang, 2015. "Local Linear Estimation of Second-order Jump-diffusion Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(18), pages 3903-3920, September.
    7. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    8. Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    2. Aït-Sahalia, Yacine & Kalnina, Ilze & Xiu, Dacheng, 2020. "High-frequency factor models and regressions," Journal of Econometrics, Elsevier, vol. 216(1), pages 86-105.
    3. Wang, Yunyan & Zhang, Lixin & Tang, Mingtian, 2012. "Local M-estimation for jump-diffusion processes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1273-1284.
    4. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    5. Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
    6. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    7. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    8. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    9. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    10. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    11. Liling Deng & Haifang Xiong & Zhiqiang Wang, 2023. "Research on cojumps of electronic commerce overnight factors in volatility prediction based on joint BW test," Electronic Commerce Research, Springer, vol. 23(1), pages 115-135, March.
    12. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    13. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    14. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    15. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    16. Chen, Qiang & Zheng, Xu & Pan, Zhiyuan, 2015. "Asymptotically distribution-free tests for the volatility function of a diffusion," Journal of Econometrics, Elsevier, vol. 184(1), pages 124-144.
    17. Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
    18. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    19. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    20. Dinesh Gajurel & Mardi Dungey & Wenying Yao & Nagaratnam Jeyasreedharan, 2020. "Jump Risk in the US Financial Sector," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 331-349, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:43:y:2022:i:1:p:53-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.