Maximum likelihood estimation for vector autoregressions with multivariate stochastic volatility
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2014.03.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010.
"Inflation-Gap Persistence in the US,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
- Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2008. "Inflation-Gap Persistence in the U.S," NBER Working Papers 13749, National Bureau of Economic Research, Inc.
- Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
- Timothy Cogley & Thomas J. Sargent, 2005.
"Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
- Timothy Cogley & Thomas Sargent, "undated". "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Timothy Cogley & Thomas J. Sargent, 2003. "Drifts and volatilities: monetary policies and outcomes in the post WWII U.S," FRB Atlanta Working Paper 2003-25, Federal Reserve Bank of Atlanta.
- Harald Uhlig, 1997.
"Bayesian Vector Autoregressions with Stochastic Volatility,"
Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
- Uhlig, H.F.H.V.S., 1996. "Bayesian Vector Autoregressions with Stochastic Volatility," Discussion Paper 1996-09, Tilburg University, Center for Economic Research.
- Timothy Cogley & Thomas J. Sargent, 2002.
"Evolving Post-World War II US Inflation Dynamics,"
NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388,
National Bureau of Economic Research, Inc.
- Timothy Cogley & Thomas Sargent, "undated". "Evolving Post-World War II U.S. Inflation Dynamics," Working Papers 2132872, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Shephard, Neil, 1994. "Local scale models : State space alternative to integrated GARCH processes," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 181-202.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Moura, Guilherme V. & Noriller, Mateus R., 2019. "Maximum likelihood estimation of a TVP-VAR," Economics Letters, Elsevier, vol. 174(C), pages 78-83.
- Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023.
"Exact Likelihood for Inverse Gamma Stochastic Volatility Models,"
GRIPS Discussion Papers
23-07, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 24-03, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," Working Paper series 23-11, Rimini Centre for Economic Analysis.
- Xinyu Huang & Weihao Han & David Newton & Emmanouil Platanakis & Dimitrios Stafylas & Charles Sutcliffe, 2023. "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, Taylor & Francis Journals, vol. 29(7), pages 800-825, May.
- Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive Models and Heavy Tails with an Application to Inflation Forecasting," EMF Research Papers 13, Economic Modelling and Forecasting Group.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008.
"How Structural Are Structural Parameters?,"
NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137,
National Bureau of Economic Research, Inc.
- Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "How Structural Are Structural Parameters?," NBER Working Papers 13166, National Bureau of Economic Research, Inc.
- Jesús Fernández-Villaverde & Juan F Rubio-Ramírez, 2007. "How Structural Are Structural Parameters?," Levine's Bibliography 843644000000000057, UCLA Department of Economics.
- Arratibel, Olga & Michaelis, Henrike, 2013.
"The Impact of Monetary Policy and Exchange Rate Shocks in Poland: Evidence from a Time-Varying VAR,"
Discussion Papers in Economics
21088, University of Munich, Department of Economics.
- Arratibel, Olga & Michaelis, Henrike, 2014. "The impact of monetary policy and exchange rate shocks in Poland: evidence from a time-varying VAR," Working Paper Series 1636, European Central Bank.
- Hartwig, Benny, 2020.
"Robust inference intime-varying structural VAR models: The DC-Cholesky multivariate stochasticvolatility model,"
Discussion Papers
34/2020, Deutsche Bundesbank.
- Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
- Mumtaz, Haroon & Surico, Paolo, 2008.
"Evolving International Inflation Dynamics: Evidence from a Time-varying Dynamic Factor Model,"
CEPR Discussion Papers
6767, C.E.P.R. Discussion Papers.
- Haroon Mumtaz & Paolo Surico, 2008. "Evolving international inflation dynamics: evidence from a time-varying dynamic factor model," Bank of England working papers 341, Bank of England.
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2018. "Monetary policy shocks, inflation persistence, and long memory," Journal of Macroeconomics, Elsevier, vol. 55(C), pages 117-127.
- Mohanty, Deepak & John, Joice, 2015. "Determinants of inflation in India," Journal of Asian Economics, Elsevier, vol. 36(C), pages 86-96.
- Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
- Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
- Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
- Prüser, Jan, 2021. "The horseshoe prior for time-varying parameter VARs and Monetary Policy," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
- Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014.
"Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
- Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2012. "Forecasting UK GDP growth, inflation and interest rates under structural change: a comparison of models with time-varying parameters," Bank of England working papers 450, Bank of England.
- Denis Belomestny & Ekaterina Krymova & Andrey Polbin, 2020. "Estimating TVP-VAR models with time invariant long-run multipliers," Papers 2008.00718, arXiv.org.
- Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
- Punzi, Maria Teresa, 2016. "Financial cycles and co-movements between the real economy, finance and asset price dynamics in large-scale crises," FinMaP-Working Papers 61, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Pagliari, Maria Sole, 2024.
"Does one (unconventional) size fit all? Effects of the ECB’s unconventional monetary policies on the euro area economies,"
European Economic Review, Elsevier, vol. 168(C).
- Maria Sole Pagliari, 2021. "Does one (unconventional) size fit all? Effects of the ECB's unconventional monetary policies on the euro area economies," Working papers 829, Banque de France.
- Zheng Liu & Daniel F. Waggoner & Tao Zha, 2009.
"Sources of the Great Moderation: shocks, frictions, or monetary policy?,"
FRB Atlanta Working Paper
2009-03, Federal Reserve Bank of Atlanta.
- Zheng Liu & Daniel F. Waggoner & Tao Zha, 2009. "Sources of the Great Moderation: shocks, friction, or monetary policy?," Working Paper Series 2009-01, Federal Reserve Bank of San Francisco.
- Zheng Liu, 2009. "Sources of the Great Moderation: Shocks, Frictions, or Monetary Policy?," 2009 Meeting Papers 379, Society for Economic Dynamics.
More about this item
Keywords
Heteroskedasticity; Local scale; Iteratively reweighted least squares;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:123:y:2014:i:3:p:282-286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.