The cyclical component factor model
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Christian M. Dahl & Henrik Hansen & John Smidt, 2008. "The cyclical component factor model," CREATES Research Papers 2008-44, Department of Economics and Business Economics, Aarhus University.
References listed on IDEAS
- Phillips, Peter C.B., 2005.
"Automated Discovery In Econometrics,"
Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
- Peter C.B. Phillips, 2004. "Automated Discovery in Econometrics," Cowles Foundation Discussion Papers 1469, Cowles Foundation for Research in Economics, Yale University.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Regina Kaiser & Agustín Maravall, 1999. "Short-Term and Long-Term Trends, Seasonal Adjustment, and the Business Cycles," Working Papers 9918, Banco de España.
- Israel Sancho & maximo Camacho, 2002. "Spanish diffusion indexes," Computing in Economics and Finance 2002 276, Society for Computational Economics.
- Nii Ayi Armah & Norman Swanson, 2010.
"Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
- Nii Ayi Armah & Norman R. Swanson, 2008. "Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments," Working Papers 08-25, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Largescale Macroeconomic Time Series Environments," Departmental Working Papers 201105, Rutgers University, Department of Economics.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Banerjee, Anindya & Marcellino, Massimiliano, 2006.
"Are there any reliable leading indicators for US inflation and GDP growth?,"
International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
- Anindya BANERJEE & Massimiliano MARCELLINO, 2002. "Are There Any Reliable Leading Indicators for US Inflation and GDP Growth?," Economics Working Papers ECO2002/21, European University Institute.
- Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated".
"Factor forecasts for the UK,"
Working Papers
203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Michael ARTIS & Anindya BANERJEE & Massimiliano MARCELLINO, 2001. "Factor Forecasts for the UK," Economics Working Papers ECO2001/15, European University Institute.
- Artis, Michael & Banerjee, Anindya & Marcellino, Massimiliano, 2002. "Factor Forecasts for the UK," CEPR Discussion Papers 3119, C.E.P.R. Discussion Papers.
- Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003.
"Macroeconomic forecasting in the Euro area: Country specific versus area-wide information,"
European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
- Massimiliano Marcellino & James H. Stock & Mark W. Watson, "undated". "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999.
"Statistical algorithms for models in state space using SsfPack 2.2,"
Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
- Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.
- Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Other publications TiSEM 8fe36759-6517-4c66-86fa-e, Tilburg University, School of Economics and Management.
- Carvalho, Vasco & Harvey, Andrew & Trimbur, Thomas, 2007. "A Note on Common Cycles, Common Trends, and Convergence," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 12-20, January.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
- Dahl, Christian & Hansen, Henrik & Smidt, John, 2005. "Makroøkonomiske forudsigelser baseret på diffusionsindeks," Nationaløkonomisk tidsskrift, Nationaløkonomisk Forening, vol. 2005(1), pages 125-152.
- Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Moral Carcedo, Julian & Perez García, Julian, 2015. "Feeding Large Econometric Models by a Mixed Approach of Classical Decomposition of Series and Dynamic Factor Analysis: Application to Wharton-UAM Model/Alimentando grandes modelos econométricos median," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 487-512, Mayo.
- Arvid Raknerud & Terje Skjerpen & Anders Rygh Swensen, 2010.
"Forecasting key macroeconomic variables from a large number of predictors: a state space approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 367-387.
- Arvid Raknerud & Terje Skjerpen & Anders Rygh Swensen, 2007. "Forecasting key macroeconomic variables from a large number of predictors: A state space approach," Discussion Papers 504, Statistics Norway, Research Department.
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Albers, Thilo Nils Hendrik, 2018. "The prelude and global impact of the Great Depression: Evidence from a new macroeconomic dataset," Explorations in Economic History, Elsevier, vol. 70(C), pages 150-163.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Banbura, Marta & Rünstler, Gerhard, 2011.
"A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
- Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
- Rünstler, Gerhard & Bańbura, Marta, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 751, European Central Bank.
- Francisco Dias & Maximiano Pinheiro & António Rua, 2010.
"Forecasting using targeted diffusion indexes,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 341-352.
- António Rua & Francisco Craveiro Dias, 2008. "Forecasting Using Targeted Diffusion Indexes," Working Papers w200807, Banco de Portugal, Economics and Research Department.
- Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008.
"Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise,"
Working Paper Research
133, National Bank of Belgium.
- G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2008. "Short-Term Forecasting of GDP Using Large Monthly Datasets: A Pseudo Real-Time Forecast Evaluation Exercise," Bank of Lithuania Working Paper Series 1, Bank of Lithuania.
- Barhoumi, K. & Rünstler, G. & Cristadoro, R. & Den Reijer, A. & Jakaitiene, A. & Jelonek, P. & Rua, A. & Ruth, K. & Benk, S. & Van Nieuwenhuyze, C., 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Working papers 215, Banque de France.
- Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010.
"Are disaggregate data useful for factor analysis in forecasting French GDP?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2009. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Working papers 232, Banque de France.
- G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
- Milena Lipovina-Božović, 2013. "A Comparison Of The Var Model And The Pc Factor Model In Forecasting Inflation In Montenegro," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 58(198), pages 115-136, July - Se.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
- O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007.
"Forecasting inflation using economic indicators: the case of France,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
- Bruneau, C. & De Bandt, O. & Flageollet, A. & Michaux, E., 2003. "Forecasting Inflation using Economic Indicators: the Case of France," Working papers 101, Banque de France.
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
More about this item
Keywords
Factor model Cyclical components Estimation Real time forecasting;JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:1:p:119-127. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.