IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v36y2014icp213-219.html
   My bibliography  Save this article

Multi-objective hedging model with the third central moment and the capital budget

Author

Listed:
  • Fu, Junhui

Abstract

The third central moment and the capital budget are two important factors in designing the optimal hedge strategy. This paper investigates the problem of futures hedging under the third central moment and the capital budget. Based on the multi-objective programming, a multi-objective hedging model with two important factors is proposed to manage this problem. Using the method of weighted sums, the multi-objective hedging model can be equivalently transformed into an ordinary single-objective programming. By solving the single-objective programming, we derive the optimal hedge ratio under the third central moment and the capital budget. Finally, an empirical example of hedging copper is given to illustrate the application of the proposed model. The results also show clearly the influence of the third central moment and the capital budget in the hedging decision.

Suggested Citation

  • Fu, Junhui, 2014. "Multi-objective hedging model with the third central moment and the capital budget," Economic Modelling, Elsevier, vol. 36(C), pages 213-219.
  • Handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:213-219
    DOI: 10.1016/j.econmod.2013.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313004082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2013.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Lien & Yiu Kuen Tse, 2000. "Hedging downside risk with futures contracts," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 163-170.
    2. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    3. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    4. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    5. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    6. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    7. Lien, Donald & Wong, Kit Pong, 2005. "Multinationals and futures hedging under liquidity constraints," Global Finance Journal, Elsevier, vol. 16(2), pages 210-220, December.
    8. Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
    9. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    10. Turvey, Calum G. & Nayak, Govindaray, 2003. "The Semivariance-Minimizing Hedge Ratio," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-16, April.
    11. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    12. Ederington, Louis H. & Salas, Jesus M., 2008. "Minimum variance hedging when spot price changes are partially predictable," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 654-663, May.
    13. Lien, Donald & Wilson, Bradley K., 2001. "Multiperiod hedging in the presence of stochastic volatility," International Review of Financial Analysis, Elsevier, vol. 10(4), pages 395-406.
    14. Mello, Antonio S & Parsons, John E, 2000. "Hedging and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 127-153.
    15. Lioui, Abraham & Eldor, Rafael, 1998. "Optimal spreading when spreading is optimal," Journal of Economic Dynamics and Control, Elsevier, vol. 23(2), pages 277-301, September.
    16. H. N. E. BystrOm, 2003. "The hedging performance of electricity futures on the Nordic power exchange," Applied Economics, Taylor & Francis Journals, vol. 35(1), pages 1-11.
    17. Fu, Junhui & Zhang, Wei-Guo & Yao, Zheng & Zhang, Xili, 2012. "Hedging the portfolio of raw materials and the commodity under the mark-to-market risk," Economic Modelling, Elsevier, vol. 29(4), pages 1070-1075.
    18. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    19. Kit Pong Wong, 2005. "Tax asymmetry and futures hedging under liquidity constraints," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 271-281.
    20. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    2. Hou, Yang & Holmes, Mark, 2017. "On the effects of static and autoregressive conditional higher order moments on dynamic optimal hedging," MPRA Paper 82000, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    2. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    3. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    4. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    5. Dinica, Mihai Cristian & Armeanu, Daniel, 2014. "The Optimal Hedging Ratio for Non-Ferrous Metals," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 105-122, March.
    6. John Cotter & Jim Hanly, 2012. "Hedging effectiveness under conditions of asymmetry," The European Journal of Finance, Taylor & Francis Journals, vol. 18(2), pages 135-147, February.
    7. Thomas Conlon & John Cotter & Ramazan Gençay, 2016. "Commodity futures hedging, risk aversion and the hedging horizon," The European Journal of Finance, Taylor & Francis Journals, vol. 22(15), pages 1534-1560, December.
    8. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    9. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    10. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    11. Wen-Chung Hsu & Hsiang-Tai Lee, 2018. "Cross Hedging Stock Sector Risk with Index Futures by Considering the Global Equity Systematic Risk," IJFS, MDPI, vol. 6(2), pages 1-17, April.
    12. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    13. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    14. Rozaimah Zainudin & Roselee Shah Shaharudin, 2011. "Multi Mean Garch Approach to Evaluating Hedging Performance in the Crude Palm Oil Futures Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 7(1), pages 111-130.
    15. Zanotti, Giovanna & Gabbi, Giampaolo & Geranio, Manuela, 2010. "Hedging with futures: Efficacy of GARCH correlation models to European electricity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(2), pages 135-148, April.
    16. Bessler, Wolfgang & Wolff, Dominik, 2014. "Hedging European government bond portfolios during the recent sovereign debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 379-399.
    17. John Hua Fan & Eduardo Roca & Alexandr Akimov, 2014. "Estimation and performance evaluation of optimal hedge ratios in the carbon market of the European Union Emissions Trading Scheme," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 73-91, February.
    18. Shrestha, Keshab & Subramaniam, Ravichandran & Rassiah, Puspavathy, 2017. "Pure martingale and joint normality tests for energy futures contracts," Energy Economics, Elsevier, vol. 63(C), pages 174-184.
    19. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    20. Jui-Cheng Hung & Chien-Liang Chiu & Ming-Chih Lee, 2006. "Hedging with zero-value at risk hedge ratio," Applied Financial Economics, Taylor & Francis Journals, vol. 16(3), pages 259-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:213-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.