Semiparametric Efficient Adaptive Estimation of the PTTGARCH model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
- Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009.
"Nuisance parameters, composite likelihoods and a panel of GARCH models,"
Economics Papers
2009-W12, Economics Group, Nuffield College, University of Oxford.
- Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Series Working Papers 458, University of Oxford, Department of Economics.
- Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
- repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
- Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994.
"Adaptive estimation in time-series models,"
Discussion Paper
1994-88, Tilburg University, Center for Economic Research.
- Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1997. "Adaptive estimation in time-series models," Other publications TiSEM aa253902-af93-4e1e-b974-2, Tilburg University, School of Economics and Management.
- Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
- Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-106.
- Drost, Feike C. & Klaassen, Chris A. J., 1997.
"Efficient estimation in semiparametric GARCH models,"
Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
- Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
- Drost, F.C. & Klaassen, C.A.J., 1997. "Efficient estimation in semiparametric GARCH models," Other publications TiSEM c7de3f1c-c456-433e-a1c6-2, Tilburg University, School of Economics and Management.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Liu, Ji-Chun, 2006. "On the tail behaviors of Box-Cox transformed threshold GARCH(1,1) process," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1323-1330, July.
- Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
- Hwang, S. Y. & Kim, Tae Yoon, 2004. "Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 295-314, April.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
- Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ciccarelli Nicola, 2018. "Semiparametric efficient adaptive estimation of the GJR-GARCH model," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 141-160, July.
- Francq, Christian & Zakoian, Jean-Michel, 2013.
"Inference in non stationary asymmetric garch models,"
MPRA Paper
44901, University Library of Munich, Germany.
- Christian Francq & Jean-Michel Zakoian, 2013. "Inference in Non Stationary Asymmetric Garch Models," Working Papers 2013-11, Center for Research in Economics and Statistics.
- Gonzalez-Rivera, Gloria & Drost, Feike C., 1999.
"Efficiency comparisons of maximum-likelihood-based estimators in GARCH models,"
Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Other publications TiSEM d93a8be0-5dcd-4ae8-9eb1-b, Tilburg University, School of Economics and Management.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Discussion Paper 1998-124, Tilburg University, Center for Economic Research.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Other publications TiSEM 7a28bbc8-e8d6-4dbe-874e-5, Tilburg University, School of Economics and Management.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Discussion Paper 1998-124, Tilburg University, Center for Economic Research.
- Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
- Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- M. MALLIKARJUNA & R. Prabhakara RAO, 2019. "Volatility experience of major world stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 35-52, Winter.
- Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
- Trifonov, Juri & Potanin, Bogdan, 2024. "GARCH-M model with an asymmetric risk premium: Distinguishing between ‘good’ and ‘bad’ volatility periods," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Drost, Feike C. & Klaassen, Chris A. J., 1997.
"Efficient estimation in semiparametric GARCH models,"
Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
- Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
- Drost, F.C. & Klaassen, C.A.J., 1997. "Efficient estimation in semiparametric GARCH models," Other publications TiSEM c7de3f1c-c456-433e-a1c6-2, Tilburg University, School of Economics and Management.
- Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
- Shekar Bose & Hafizur Rahman, 2022. "Are News Effects Necessarily Asymmetric? Evidence from Bangladesh Stock Market," SAGE Open, , vol. 12(4), pages 21582440221, October.
- Bentes, Sonia R., 2018. "Is stock market volatility asymmetric? A multi-period analysis for five countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 258-265.
- Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
- Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
- Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
- repec:agr:journl:v:4(621):y:2019:i:4(621):p:35-52 is not listed on IDEAS
- Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
- Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
- Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
- Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Other publications TiSEM 3da5ac9e-1f93-41b2-aaa0-5, Tilburg University, School of Economics and Management.
- N’dri Konan Léon, 2015. "Forecasting Stock Return Volatility: Evidence from the West African Regional Stock Market," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 5(6), pages 1-2.
More about this item
Keywords
Semiparametric adaptive estimation; Power-transformed and threshold GARCH.;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-06-25 (Econometrics)
- NEP-ETS-2016-06-25 (Econometric Time Series)
- NEP-NET-2016-06-25 (Network Economics)
- NEP-ORE-2016-06-25 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:72021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.