IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v178y2021ics0167715221001243.html
   My bibliography  Save this article

Prabhakar Lévy processes

Author

Listed:
  • Gajda, Janusz
  • Beghin, Luisa

Abstract

We introduce here a generalization of the Mittag-Leffler Lévy process (with parameter α), obtained by extending its Lévy measure through the Prabhakar function (which is a Mittag-Leffler with the additional parameters β and γ). We prove that this so-called Prabhakar process, in the special case β=1, can be represented as an α-stable process subordinated by an independent generalized gamma subordinator; thus it can be considered as an extension of the geometric stable process, to which it reduces for γ=1. On the other hand, for α=β=1, it coincides with the generalized gamma process itself. Therefore, by suitably specifying the three parameters, the Prabhakar process turns out to represent an interpolation among various well-known and widely applied stochastic models.

Suggested Citation

  • Gajda, Janusz & Beghin, Luisa, 2021. "Prabhakar Lévy processes," Statistics & Probability Letters, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001243
    DOI: 10.1016/j.spl.2021.109162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beghin, L., 2012. "Random-time processes governed by differential equations of fractional distributed order," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1314-1327.
    2. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    4. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    3. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    4. Najma Ahmed & Nehad Ali Shah & Farman Ali & Dumitru Vieru & F.D. Zaman, 2021. "Analytical Solutions of the Fractional Mathematical Model for the Concentration of Tumor Cells for Constant Killing Rate," Mathematics, MDPI, vol. 9(10), pages 1-14, May.
    5. Fenglong Guo, 2025. "Pricing Vulnerable Options With Variance Gamma Systematic and Idiosyncratic Factors by Laplace Transform Inversion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 47-76, January.
    6. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    7. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    8. K. K. Kataria & M. Khandakar, 2022. "Generalized Fractional Counting Process," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2784-2805, December.
    9. Nuerxiati Abudurexiti & Erhan Bayraktar & Takaki Hayashi & Hasanjan Sayit, 2024. "Two-fund separation under hyperbolically distributed returns and concave utility function," Papers 2410.04459, arXiv.org, revised Jan 2025.
    10. Roman V. Ivanov & Katsunori Ano, 2016. "On exact pricing of FX options in multivariate time-changed Lévy models," Review of Derivatives Research, Springer, vol. 19(3), pages 201-216, October.
    11. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    12. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    13. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    14. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
    15. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    16. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    17. Pablo Su'arez-Garc'ia & David G'omez-Ullate, 2012. "Scaling, stability and distribution of the high-frequency returns of the IBEX35 index," Papers 1208.0317, arXiv.org.
    18. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Lloyd Blenman & Steven Clark, 2005. "Options with Constant Underlying Elasticity in Strikes," Review of Derivatives Research, Springer, vol. 8(2), pages 67-83, August.
    20. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:178:y:2021:i:c:s0167715221001243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.